分析 (1)利用a2+c2=2b2,所以b2=2accosB=16,即b=4,再求出a,可得數(shù)列{an}的通項(xiàng)公式;利用Tn-2bn+2=0,再寫一式,相減,可得數(shù)列{bn}是以2為首項(xiàng),公比為2的等比數(shù)列,即可得出數(shù)列{bn}的通項(xiàng)公式;
(2)利用分組求和,即可求數(shù)列{cn}的前2n+1項(xiàng)和T2n+1.
解答 解:(1)因?yàn)?S=4\sqrt{3}$,∠B=60°,所以ac=16,
由于a2+c2=2b2,所以b2=2accosB=16,即b=4,
所以a2+c2=2b2=32,解得a=4,
所以an=4n;
由于Tn-2bn+2=0,所以當(dāng)n≥2時(shí)Tn-1-2bn-1+2=0
相減整理的$\frac{b_n}{{{b_{n-1}}}}=2$,即數(shù)列{bn}是以2為首項(xiàng),公比為2的等比數(shù)列,
即${b_n}={2^n}$;
(2)T2n+1=c1+c2+…+c2n+1=(a1+a3+…a2n+1)+(b2+b4+…b2n)
=$\frac{{({n+1})({4+8n+4})}}{2}+\frac{{4({1-{4^n}})}}{1-4}$=$4{({n+1})^2}+\frac{4}{3}({{4^n}-1})$
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)與求和,考查學(xué)生的計(jì)算能力,確定數(shù)列的通項(xiàng)是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 1 | C. | $\sqrt{3}$i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 8 | C. | 36 | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2005 | B. | 2006 | C. | 2007 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | $\frac{3\sqrt{2}}{2}$ | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}+{y}^{2}$=1 | B. | $\frac{{x}^{2}}{9}+\frac{{y}^{2}}{81}$=1 | ||
C. | $\frac{{x}^{2}}{9}+{y}^{2}$=1或 $\frac{{x}^{2}}{9}+\frac{{y}^{2}}{81}$=1 | D. | $\frac{{x}^{2}}{81}+\frac{{y}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com