13.已知f(x)=sinωx+cosωx(ω>0),若$y=f({x+θ})({0<θ<\frac{π}{2}})$是周期為π的偶函數(shù),則θ的值是( 。
A.$\frac{π}{8}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

分析 由題意可得y=f(x+θ)=$\sqrt{2}$sin(ωx+ωθ+$\frac{π}{4}$)是周期為π的偶函數(shù),則ωθ+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,且$\frac{2π}{ω}$=π,由此求得θ的值.

解答 解:f(x)=sinωx+cosωx=$\sqrt{2}$sin(ωx+$\frac{π}{4}$),
若 y=f(x+θ)=$\sqrt{2}$sin[ω(x+θ)+$\frac{π}{4}$]=$\sqrt{2}$sin(ωx+ωθ+$\frac{π}{4}$)是周期為π的偶函數(shù),
則ωθ+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,且$\frac{2π}{ω}$=π,
求得ω=2,θ=$\frac{π}{8}$,
故選:A.

點評 本題主要考查兩角和差的正弦公式,正弦函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(1+x)2-2ln(1+x)若函數(shù)g(x)=f(x)-x2-x-a在區(qū)間[0,2]上恰有兩個不同的零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x3-3x2-3x+2.
(1)點M(-1,f(-1))處的切線方程;
(2)討論函數(shù)y=f(x)的單調(diào)區(qū)間,并求函數(shù)y=f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知圓C的方程為x2+y2+2x-4y-3=0,則圓心A的坐標(biāo)是(  )
A.(1,2)B.(1,-2)C.(-1,2)D.(-1,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)已知$\frac{sinα-cosα}{2sinα+3cosα}$=$\frac{1}{5}$,求tanα的值
(2)化簡:$\sqrt{\frac{1+cosα}{1-cosα}}+\sqrt{\frac{1-cosα}{1+cosα}}$(α為第四象限角)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.不等式${log_{\frac{1}{2}}}(x-1)>1$的解集是$(1,\frac{3}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機(jī)摸出2只球,則這2只球中有黃球的概率為$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)集合$A=\left\{{x|{3^{x(x-3)}}<1}\right\},B=\left\{{x|y=\sqrt{{{log}_2}(x-1)}}\right\}$,則A∩B={x|2≤x<3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax2x+bex(a≠0),g(x)=x.(e為自然對數(shù)的底數(shù))
(I)若a=b=1,求F(x)=f(x)-g(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a>0時,設(shè)f(x)的圖象C1與y=g(x)的圖象C1相交于兩個不同的點P、Q,過線段PQ的中點作x軸的垂線交C1于點M(x0,y0),求證:f(x0)<1.

查看答案和解析>>

同步練習(xí)冊答案