8.(1)已知$\frac{sinα-cosα}{2sinα+3cosα}$=$\frac{1}{5}$,求tanα的值
(2)化簡(jiǎn):$\sqrt{\frac{1+cosα}{1-cosα}}+\sqrt{\frac{1-cosα}{1+cosα}}$(α為第四象限角)

分析 (1)由條件直接利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.
(2)利用同角三角函數(shù)的基本關(guān)系、以及三角函數(shù)在各個(gè)象限中的符號(hào),化簡(jiǎn)要求的式子可的結(jié)果.

解答 解:(1)∵已知$\frac{sinα-cosα}{2sinα+3cosα}$=$\frac{tanα-1}{2tanα+3}$=$\frac{1}{5}$,∴tanα=$\frac{8}{3}$ 
(2)∵α為第四象限角,∴$\sqrt{\frac{1+cosα}{1-cosα}}+\sqrt{\frac{1-cosα}{1+cosα}}$=$\sqrt{\frac{{(1+cosα)}^{2}}{{sin}^{2}α}}$+$\sqrt{\frac{{(1-cosα)}^{2}}{{sin}^{2}α}}$=|$\frac{1+cosα}{sinα}$|+|$\frac{1-cosα}{sinα}$|
=-$\frac{1+cosα}{sinα}$-$\frac{1-cosα}{sinα}$=$\frac{-2}{sinα}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知直線ax-by+c=0(ab≠0)與圓x2+y2=1相切,則三條邊長(zhǎng)分別為|a|,|b|,|c|的三角形( 。
A.是銳角三角形B.是直角三角形C.是鈍角三角形D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.定積分${∫}_{-1}^{1}$x2dx=( 。
A.0B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在△ABC中,D為AC上一點(diǎn),且$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{DC},P$為BD上一點(diǎn),且滿足$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC}(m>0,n>0)$,則$\frac{1}{m}+\frac{1}{n}$的最小值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列命題中正確的命題個(gè)數(shù)是(  )
①若直線a∥b,b∥c,則a∥c;    
②若直線a∥b,b?α,則a∥α
③若直線a⊥α,直線b?α,則a⊥b
④若直線a⊥m,b⊥n,m與n為平面α內(nèi)兩相交直線,則a⊥α
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知f(x)=sinωx+cosωx(ω>0),若$y=f({x+θ})({0<θ<\frac{π}{2}})$是周期為π的偶函數(shù),則θ的值是( 。
A.$\frac{π}{8}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在△ABC中,∠A,∠B,∠C所對(duì)的邊為a,b,c,A=60°,b=1,S△ABC=$\sqrt{3}$,則c等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖所示的函數(shù)$f(x)=2sin(wx+φ)(w>0,\frac{π}{2}≤φ≤π)$的部分圖象,其中A、B兩點(diǎn)之間的距離為5,那么f(-1)=( 。
A.-1B.2C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.不等式|x2-2|<1的解集為(  )
A.$(-\sqrt{3},1)∪(\sqrt{3},+∞)$B.$(-∞,-1)∪(\sqrt{3},+∞)$C.$(-∞,-\sqrt{3})∪(\sqrt{3},+∞)$D.$(-\sqrt{3},-1)∪(1,\sqrt{3})$

查看答案和解析>>

同步練習(xí)冊(cè)答案