12.已知函數(shù)f(x)=$\sqrt{1+a•{4^x}}$的定義域為(-∞,-1],則實數(shù)a=-4.

分析 根據(jù)二次根式的性質(zhì)得到a•4x≥-1在x∈(-∞,-1]恒成立,通過討論a的符號,得到關于a的方程,從而求出a的值即可.

解答 解:由題意得:
1+a•4x≥0在x∈(-∞,-1]恒成立,
∴a•4x≥-1在x∈(-∞,-1]恒成立,
a≥0時,a•4x≥-1在R恒成立,定義域是R,與定義域為(-∞,-1]不符,
a<0時,4x≤-$\frac{1}{a}$,x≤${log}_{4}^{(-\frac{1}{a})}$=-1,
∴-$\frac{1}{a}$=$\frac{1}{4}$,解得:a=-4,
故答案為:-4.

點評 本題考查了函數(shù)的定義域以及二次根式的性質(zhì)、指數(shù)函數(shù)的性質(zhì),是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)y=ax+b和函數(shù)y=ax2+bx+c的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列命題中,真命題是( 。
A.?x0∈R,使得ex0≤0B.sinx+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z)
C.?x∈R,2x>x2D.a>1,b>1是ab>1的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設M(x0,y0)是橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一點,A,B是其左,右頂點,2$\overrightarrow{AM}$•$\overrightarrow{BM}$=$x_0^2$-a2,則離心率e=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{4}{5}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若正實數(shù)a,b滿足a+b=4,則log2a+log2b的最大值是( 。
A.18B.2C.2$\sqrt{3}$D.2$\root{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求M在AB的延長線上,N在AD的延長線上,且對角線MN過點C,已知AB=3米,AD=2米,記矩形AMPN的面積為S平方米.
(1)按下列要求建立函數(shù)關系;
(i)設AN=x米,將S表示為x的函數(shù);
(ii)設∠BMC=θ(rad),將S表示為θ的函數(shù).
(2)請你選用(1)中的一個函數(shù)關系,求出S的最小值,并求出S取得最小值時AN的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.為了滿足社區(qū)居民健身活動,某社區(qū)準備在一塊大約400m×400m的接近正方形荒地上建一個健身活動廣場,首先要建設如圖所示的一個總面積為4000m2的矩形場地,其中陰影部分為通道,通道寬度均為2米,中間的三個矩形區(qū)域?qū)佋O塑膠地面作為健身運動場地(其中兩個小場地形狀相同),怎樣設計矩形場地的長和寬,使塑膠運動場地占地面積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若0<x<1,則$\sqrt{(x-\frac{1}{x})^{2}+4}$-$\sqrt{(x+\frac{1}{x})^{2}-4}$等于2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設集合A={2,3,a2+2a-3},B={x||x-a|<2}
(1)當a=2時,求A∩B;
(2)若0∈A∩B,求實數(shù)a的值.

查看答案和解析>>

同步練習冊答案