分析 令2x-1=t≥1,則x=$\frac{1+t}{2}$.代入可得函數(shù)y=f(x)=$\frac{4×\frac{(1+t)^{2}}{4}-2×\frac{1+t}{2}+16}{t}$=t+$\frac{16}{t}$+1,再利用基本不等式的性質(zhì)即可得出.
解答 解:令2x-1=t≥1,則x=$\frac{1+t}{2}$.
∴函數(shù)y=f(x)=$\frac{{4{x^2}-2x+16}}{2x-1}$=$\frac{4×\frac{(1+t)^{2}}{4}-2×\frac{1+t}{2}+16}{t}$=t+$\frac{16}{t}$+1≥2$\sqrt{t•\frac{16}{t}}$+1=9,當且僅當t=4,即x=$\frac{5}{2}$時取等號.
故答案為:9,$\frac{5}{2}$.
點評 本題考查了函數(shù)的單調(diào)性、基本不等式的性質(zhì)、“換元法”,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | 2 | D. | ln2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ±1 | B. | ±3 | C. | -3或1 | D. | -1或3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com