【題目】已知函數(shù)f(x)=sinωx﹣cosωx(ω>0),,若方程f(x)=﹣1(0,π)上有且只有四個(gè)實(shí)數(shù)根,則實(shí)數(shù)ω的取值范圍為 ( )

A. ] B. ,] C. ,] D. ,]

【答案】A

【解析】

化簡(jiǎn)f(x)的解析式,作出f(x)的函數(shù)圖象,利用三角函數(shù)的性質(zhì)求出直線y=﹣1與y=f(x)在(0,+∞)上的交點(diǎn)坐標(biāo),則π介于第4和第5個(gè)交點(diǎn)橫坐標(biāo)之間.

f(x)=2sin(ωx﹣),

作出f(x)的函數(shù)圖象如圖所示:

令2sin(ωx﹣)=﹣1得ωx﹣=﹣+2kπ,或ωx﹣=+2kπ,

∴x=+,或x=+,k∈Z,

設(shè)直線y=﹣1與y=f(x)在(0,+∞)上從左到右的第4個(gè)交點(diǎn)為A,第5個(gè)交點(diǎn)為B,

則xA=,xB=,

方程f(x)=﹣1在(0,π)上有且只有四個(gè)實(shí)數(shù)根,

∴xA<π≤xB

<π≤,解得

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知空間四邊形ABCD,∠BAC=,AB=AC=2,BD=CD=6,且平面ABC⊥平面BCD,則空間四邊形ABCD的外接球的表面積為( )

A. 60π B. 36π C. 24π D. 12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求的值域;

2)求函數(shù)的最小正周期及函數(shù)的單調(diào)區(qū)間;

3)將函數(shù)的圖像向右平移個(gè)單位后,再將得到的圖像上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)保持不變,得到函數(shù)的圖像,求函數(shù)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中有四個(gè)小球,分別寫(xiě)有文、明、中、國(guó)四個(gè)字,有放回地從中任取一個(gè)小球,直到”“國(guó)兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生03之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,23代表文、明、中、國(guó)這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

232 321 230 023 123 021 132 220 001

231 130 133 231 013 320 122 103 233

由此可以估計(jì),恰好第三次就停止的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,底面是邊長(zhǎng)為3的正方形,平面,,,與平面所成的角為.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】活水圍網(wǎng)養(yǎng)魚(yú)技術(shù)具有養(yǎng)密度高、經(jīng)濟(jì)效益好的特點(diǎn)研究表明:活水圍網(wǎng)養(yǎng)魚(yú)時(shí),某種魚(yú)在一定的條件下,每尾魚(yú)的平均生長(zhǎng)速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù)當(dāng)不超過(guò)4(尾/立方米)時(shí),的值為(千克/年);當(dāng)時(shí),的一次函數(shù);當(dāng)達(dá)到(尾/立方米)時(shí),因缺氧等原因,的值為(千克/年)

(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;

(2)當(dāng)養(yǎng)殖密度為多大時(shí),魚(yú)的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大,并求出最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題,其中所有正確命題的序號(hào)是__________

①拋物線的準(zhǔn)線方程為;

②過(guò)點(diǎn)作與拋物線只有一個(gè)公共點(diǎn)的直線僅有1條;

是拋物線上一動(dòng)點(diǎn),以為圓心作與拋物線準(zhǔn)線相切的圓,則此圓一定過(guò)定點(diǎn).

④拋物線上到直線距離最短的點(diǎn)的坐標(biāo)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1)若是奇函數(shù),求的值,并判斷的單調(diào)性(不用證明);

(2)若函數(shù)在區(qū)間(0,1)上有兩個(gè)不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) f (x) = x ex (xR)

Ⅰ)求函數(shù) f (x)的單調(diào)區(qū)間和極值;

Ⅱ)若x (0, 1), 求證: f (2 x) > f (x);

Ⅲ)若x1 (0, 1), x2(1, +∞), f (x1) = f (x2), 求證: x1 + x2 > 2.

查看答案和解析>>

同步練習(xí)冊(cè)答案