8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$,則f(f($\frac{1}{2}$))=$\frac{1}{2}$,方程f(f(x))=1的解集{1,ee}.

分析 直接利用分段函數(shù)化簡求解第一問;利用分段函數(shù)判斷函數(shù)的值域范圍列出方程求解即可.

解答 解:∵f($\frac{1}{2}$)=ln$\frac{1}{2}$<0,
∴f(f($\frac{1}{2}$))=f(ln$\frac{1}{2}$)=${e}^{ln\frac{1}{2}}$=$\frac{1}{2}$.
x<0時,0<ex<1,x=0時,ex=1,方程f(f(x))=1,可得f(x)=0,lnx=0,解得x=1.
f(x)>0時,方程f(f(x))=1,可得ln[f(x)]=1,f(x)=e,即:lnx=e,解得x=ee
故答案為:第一問:$\frac{1}{2}$;
第二問:{1,ee}.

點評 本題主要考查了分段函數(shù)的函數(shù)值的求解,函數(shù)與方程的綜合應(yīng)用,代入到函數(shù)的解析式時,要熟練應(yīng)用對數(shù)運算法則.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.圓(x-2)2+y2=5與直線y=2x+1的位置關(guān)系是(  )
A.相交B.相切C.相離D.直線過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=2x+b-1(b∈R)的圖象不經(jīng)過第二象限,則有( 。
A.b≥1B.b≤1C.b≥0D.b≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}的前n項和為Sn,an≠0,an•an+1=4Sn-1
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,數(shù)列{bn}的前n項和為Tn,證明:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.$\frac{7}{16}$-$\frac{7}{8}$sin215°的值為( 。
A.$\frac{7}{32}$B.$\frac{7\sqrt{3}}{32}$C.$\frac{7}{16}$D.$\frac{7\sqrt{3}}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinx+2cos2x,x≥0}\\{-{e}^{2x},x<0}\\{\;}\end{array}\right.$,則f(f($\frac{π}{2}$))等于( 。
A.-$\frac{1}{{e}^{2}}$B.$\frac{1}{{e}^{2}}$C.-e2D.e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=2lnx-$\frac{1}{{x}^{2}}$的零點所在的區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若實數(shù)x,y滿足不等式$\left\{\begin{array}{l}y≥x\\ x+y≥4\\ x-3y+12≥0\end{array}\right.$,則2x-y的最大值是6;x2+(y-1)2的最小值是$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.3${\;}^{lo{g}_{3}5}$+(2005)0-($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$+sin$\frac{7π}{6}$=$\frac{7}{2}$.

查看答案和解析>>

同步練習(xí)冊答案