A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
分析 由題意畫出圖形,欲求向量$\overrightarrow{AC}$在$\overrightarrow{BC}$方向上的投影,根據(jù)投影的計(jì)算公式,只須求出這兩個(gè)向量的夾角及向量$\overrightarrow{AC}$的模,借助于平面幾何圖形得出三角形OAB為正三角形,最后利用向量$\overrightarrow{AC}$在$\overrightarrow{BC}$方向上的投影的定義即可求解.
解答 解:∵2$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,
∴$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{OA}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,
∴$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,
∴BC是直徑,∵|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|,
∴△OAB的等邊三角形,
OA=OB=AB=1,AC=$\sqrt{3}$,BC=2,
如圖示:
,
∴向量$\overrightarrow{AC}$與向量$\overrightarrow{BC}$的夾角是30°,
∴向量$\overrightarrow{AC}$在向量$\overrightarrow{BC}$方向上的投影是|$\overrightarrow{AC}$|cos30°=$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=$\frac{3}{2}$,
故選:B.
點(diǎn)評(píng) 此題考查了兩個(gè)向量的夾角定義,還考查向量在另外一個(gè)向量上的投影的定義及學(xué)生的分析問(wèn)題的數(shù)形結(jié)合的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-1,3} | B. | {-1} | C. | {3} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{1}{4}$個(gè)單位 | B. | 向右平移$\frac{1}{4}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{4}$個(gè)單位 | D. | 向右平移$\frac{π}{4}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com