7.在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠ABC=60°,AB=2CB=2,在梯形ACEF中,EF∥AC,且AC=2EF,CE=$\frac{\sqrt{6}}{4}$,且EC⊥平面ABCD.
(1)求證:DE=BE;
(2)求面ABF與面EBC所成二面角的余弦值的大。

分析 (1)推導(dǎo)出AC⊥BC,BC=AD=CD=1,由此能證明DE=BE.
(2)以C為原點(diǎn),CA為x軸,CB為y軸,CE為z軸,建立空間直角坐標(biāo)系,利用向量法能求出面ABF與面EBC所成二面角的余弦值.

解答 證明:(1)在△ABC中,AC2=AB2+BC2-2AB•BC•cos60°=3,
∴AB2=AC2+BC2
∴AC⊥BC,
∴BC=AD=1,AB=2,AC=$\sqrt{3}$,
∴CD=1,
∴DE=BE=$\sqrt{{1}^{2}+(\frac{\sqrt{6}}{4})^{2}}$=$\frac{\sqrt{22}}{4}$.
∴DE=BE.
解:(2)∵EC⊥平面ABCD,AC⊥BC,
∴以C為原點(diǎn),CA為x軸,CB為y軸,CE為z軸,建立空間直角坐標(biāo)系,
A($\sqrt{3},0,0$),B(0,1,0),F(xiàn)($\frac{\sqrt{3}}{2}$,0,$\frac{\sqrt{6}}{4}$),
$\overrightarrow{AB}$=(-$\sqrt{3}$,1,0),$\overrightarrow{AF}$=(-$\frac{\sqrt{3}}{2}$,0,$\frac{\sqrt{6}}{4}$),
設(shè)平面ABF的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=-\sqrt{3}x+y=0}\\{\overrightarrow{n}•\overrightarrow{AF}=-\frac{\sqrt{3}}{2}x+\frac{\sqrt{6}}{4}z=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3}$,3,$\sqrt{6}$),
平面EBC的法向量$\overrightarrow{m}$=(1,0,0),
設(shè)面ABF與面EBC所成二面角的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{3}}{\sqrt{18}}$=$\frac{\sqrt{6}}{6}$.
∴面ABF與面EBC所成二面角的余弦值為$\frac{\sqrt{6}}{6}$.

點(diǎn)評(píng) 本題考查兩條線段長相等的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD∥BC,
AD⊥側(cè)面PAB,△PAB是等邊三角形,DA=AB=2,BC=$\frac{1}{2}$AD,E是線段AB中點(diǎn).
(1)求證:PE⊥CD;
(2)求三棱錐P-CDE的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.過原點(diǎn)且傾斜角為120°的直線被圓x2+y2-4y=0所截得的弦長為( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{6}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知△ABC和平面α,∠A=30°,∠B=60°,AB=2,AB?α,且平面ABC與α所成角為30°,則點(diǎn)C到平面α的距離為$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在三棱柱ABC-A1B1C1中,點(diǎn)A1在側(cè)面BB1C1C上的射影為正方形BB1C1C的中心M,且BB1=2$\sqrt{2}$,AB=AC=3,E為A1C1的中點(diǎn).
(1)求證:A1B∥平面B1CE;
(2)求二面角B-A1B1-C1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{x}-3,x∈(0,1]}\\{{2}^{x-1}-1,x∈(1,2]}\end{array}\right.$且g(x)=f(x)-mx在(0,2]內(nèi)有且僅有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]B.(-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$]C.(-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$]D.(-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知點(diǎn)P直角△ABC所在平面外一點(diǎn),PA⊥平面ABC,∠A=90°,PA=1,AB=3,AC=4,則點(diǎn)P到BC的距離是$\frac{13}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=2,AA1=$\sqrt{2}$,E是A1C1邊的中點(diǎn),過A,B,E作截面交B1C1于點(diǎn)D
(Ⅰ)證明:B1C⊥AD;
(Ⅱ)求點(diǎn)C1到截面ABDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,直三棱柱ABC-A1B1C1中,$∠ACB={90°},AC=1,CB=\sqrt{2}$,側(cè)棱AA1=1,側(cè)面AA1B1B的兩條對(duì)角線交于點(diǎn)D,B1C1的中點(diǎn)為M.
(1)求證:CD⊥平面BDM;
(2)求證:面A1CB⊥平面BDM;
(3)求二面角B1-BD-C的平面角的余弦值;
(4)求直線BM與平面A1CB成角正切值;
(5)求點(diǎn)A到面BDM的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案