若拋物線y2=-2px(p>0)上有一點(diǎn)M,其橫坐標(biāo)為-9.它到焦點(diǎn)的距離為10,求拋物線方程和M點(diǎn)的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)如圖,橢圓的離心率為,直線和所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ) 設(shè)直線與橢圓M有兩個(gè)不同的交點(diǎn)與矩形ABCD有兩個(gè)不同的交點(diǎn).求的最大值及取得最大值時(shí)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分)已知拋物線D的頂點(diǎn)是橢圓的中心,焦點(diǎn)與該橢圓的右焦點(diǎn)重合。
(1)求拋物線D的方程;
(2)已知?jiǎng)又本l過(guò)點(diǎn)P(4,0),交拋物線D于A,B兩點(diǎn)
(i)若直線l的斜率為1,求AB的長(zhǎng);
(ii)是否存在垂直于x軸的直線m被以AP為直徑的圓M所截得的弦長(zhǎng)恒為定值?如果存在,求出m的方程,如果不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線l: y="x-2" 與拋物線y2=2x相交于兩點(diǎn)A、B,
(1)求證:OA⊥OB
(2)求線段AB的長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)
已知橢圓,斜率為的直線交橢圓于兩點(diǎn),且點(diǎn)在直線的上方,
(1)求直線與軸交點(diǎn)的橫坐標(biāo)的取值范圍;
(2)證明:的內(nèi)切圓的圓心在一條直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓O:,點(diǎn)O為坐標(biāo)原點(diǎn),一條直線:與圓O相切并與橢圓交于不同的兩點(diǎn)A、B
(1)設(shè),求的表達(dá)式;
(2)若,求直線的方程;
(3)若,求三角形OAB面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的長(zhǎng)軸長(zhǎng)為2a,焦點(diǎn)是F1(-,0)、F2(,0),點(diǎn)F1到直線x=-的距離為,過(guò)點(diǎn)F2且傾斜角為銳角的直線l與橢圓交于A、B兩點(diǎn),使得|F2B|=3|F2A|.
(1)求橢圓的方程;
(2)求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若拋物線的頂點(diǎn)在原點(diǎn),其準(zhǔn)線方程過(guò)雙曲線-=1(,)的一個(gè)焦點(diǎn),如果拋物線與雙曲線交于(,),(,-),求兩曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:.
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,
且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com