分析 (1)連接CB1,設(shè)與BC1交于點(diǎn)E,則E為CB1的中點(diǎn),由三角形的中位線(xiàn)的性質(zhì)可求DE∥AB1,進(jìn)而可證AB1∥平面DBC1;
(2)由CA1⊥AB1,DE∥AB1,可證CA1⊥DE,利用正三棱柱的性質(zhì)及面面垂直的性質(zhì)可求BD⊥平面AA1C1C,進(jìn)而利用線(xiàn)面垂直的性質(zhì)可求BD⊥CA1,利用線(xiàn)面垂直的判定定理即可得證.
解答 證明:(1)如圖,連接CB1,設(shè)與BC1交于點(diǎn)E,則E為CB1的中點(diǎn),連接DE,
又∵D是AC邊的中點(diǎn).
∴DE∥AB1,
∵DE?平面DBC1;AB1?平面DBC1,
∴AB1∥平面DBC1;
(2)∵CA1⊥AB1,DE∥AB1,
∴CA1⊥DE,
又∵在正三棱柱ABC-A1B1C1中,BD⊥平面AA1C1C,可得:BD⊥CA1,
又DE∩BD=D,
∴CA1⊥平面DBC1.
點(diǎn)評(píng) 本題主要考查了直線(xiàn)與平面垂直的判定,直線(xiàn)與平面平行的判定,正三棱柱的性質(zhì)及面面垂直的性質(zhì),線(xiàn)面垂直的性質(zhì)的應(yīng)用,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 120 | B. | 140 | C. | 180 | D. | 200 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=$\sqrt{-{x^2}-1}$ | B. | y=$\left\{\begin{array}{l}{x^2},x≥0\\ 1,x≤0\end{array}\right.$ | ||
C. | y=$\left\{\begin{array}{l}{x,x≥0}\\{0,-1<x<0}\end{array}\right.$ | D. | y2=x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24種 | B. | 18種 | C. | 72種 | D. | 36種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 1 | C. | 2 | D. | ±2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com