13.如圖,在正三棱柱(側(cè)棱垂直于底面,且底面是正三角形)ABC-A1B1C1中,D是AC邊的中點(diǎn).
(1)求證:AB1∥平面DBC1;
(2)當(dāng)CA1⊥AB1時(shí),求證:CA1⊥平面DBC1

分析 (1)連接CB1,設(shè)與BC1交于點(diǎn)E,則E為CB1的中點(diǎn),由三角形的中位線(xiàn)的性質(zhì)可求DE∥AB1,進(jìn)而可證AB1∥平面DBC1;
(2)由CA1⊥AB1,DE∥AB1,可證CA1⊥DE,利用正三棱柱的性質(zhì)及面面垂直的性質(zhì)可求BD⊥平面AA1C1C,進(jìn)而利用線(xiàn)面垂直的性質(zhì)可求BD⊥CA1,利用線(xiàn)面垂直的判定定理即可得證.

解答 證明:(1)如圖,連接CB1,設(shè)與BC1交于點(diǎn)E,則E為CB1的中點(diǎn),連接DE,
又∵D是AC邊的中點(diǎn).
∴DE∥AB1,
∵DE?平面DBC1;AB1?平面DBC1,
∴AB1∥平面DBC1
(2)∵CA1⊥AB1,DE∥AB1,
∴CA1⊥DE,
又∵在正三棱柱ABC-A1B1C1中,BD⊥平面AA1C1C,可得:BD⊥CA1,
又DE∩BD=D,
∴CA1⊥平面DBC1

點(diǎn)評(píng) 本題主要考查了直線(xiàn)與平面垂直的判定,直線(xiàn)與平面平行的判定,正三棱柱的性質(zhì)及面面垂直的性質(zhì),線(xiàn)面垂直的性質(zhì)的應(yīng)用,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在半徑為5的球面上有不共面的四個(gè)點(diǎn)A、B、C、D,且AB=CD=x,BC=DA=y,CA=BD=z,則 x2+y2+z2=(  )
A.120B.140C.180D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若sinα是5x2-7x-6=0的根,則$\frac{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α)tan^2(2π-α)}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(π+α)}$=( 。
A.$\frac{3}{5}$B.$\frac{5}{3}$C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)數(shù)列{an}滿(mǎn)足對(duì)任意m,n∈N*總有am+n=aman成立,且a1=2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}的前n項(xiàng)和為Sn,且bn=log2an,試求數(shù)列$\{\frac{1}{S_n}\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),離心率為$\frac{{\sqrt{3}}}{2}$,P、Q為其上兩動(dòng)點(diǎn),A為左頂點(diǎn),且A到上頂點(diǎn)距離$\sqrt{5}$.
(1)求C方程;
(2)若PQ過(guò)原點(diǎn),PA、QA與y軸交于M、N,問(wèn)$\overrightarrow{AM}•\overrightarrow{AN}$是否為定值;
(3)若PQ過(guò)右焦點(diǎn),問(wèn)其斜率為多少時(shí),|PQ|等于短軸長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5].
(1)當(dāng)a=-1時(shí),求函數(shù)的最大值和最小值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-5,5]上不是單調(diào)函數(shù);并求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列表達(dá)式中,表示函數(shù)的是( 。
A.y=$\sqrt{-{x^2}-1}$B.y=$\left\{\begin{array}{l}{x^2},x≥0\\ 1,x≤0\end{array}\right.$
C.y=$\left\{\begin{array}{l}{x,x≥0}\\{0,-1<x<0}\end{array}\right.$D.y2=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.分配4名煤氣工去3個(gè)不同的居民家里檢查煤氣管道,要求4名煤氣工都分配出去,并每名煤氣工只去一個(gè)居民家,且每個(gè)居民家都要有人去檢查,那么分配的方案共有( 。
A.24種B.18種C.72種D.36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.等比數(shù)列{an}的前n項(xiàng)和為Sn,且S10=33S5,則q=( 。
A.-2B.1C.2D.±2

查看答案和解析>>

同步練習(xí)冊(cè)答案