19.?dāng)?shù)列中,a1=2,an+1=$\frac{{{a_n}-1}}{{{a_n}+1}}({n∈{N^*}})$,則a2014=( 。
A.2B.$\frac{1}{3}$C.$-\frac{1}{2}$D.-3

分析 由已知結(jié)合數(shù)列遞推式求得數(shù)列的前幾項(xiàng),可得數(shù)列{an}是以4為周期的周期數(shù)列,由此求得答案.

解答 解:由a1=2,an+1=$\frac{{{a_n}-1}}{{{a_n}+1}}({n∈{N^*}})$,
得${a}_{2}=\frac{1}{3}$,${a}_{3}=\frac{\frac{1}{3}-1}{\frac{1}{3}+1}=-\frac{1}{2}$,${a}_{4}=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}=-3$,${a}_{5}=\frac{-3-1}{-3+1}=2$,…,
由上可知,數(shù)列{an}是以4為周期的周期數(shù)列,
則${a}_{2014}={a}_{503×4+2}={a}_{2}=\frac{1}{3}$.
故選:B.

點(diǎn)評 本題考查數(shù)列遞推式,考查了數(shù)列的函數(shù)特性,關(guān)鍵是對數(shù)列周期的發(fā)現(xiàn),是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.拋物線頂點(diǎn)在原點(diǎn),對稱軸是x軸,點(diǎn)(-5,2$\sqrt{5}$)到焦點(diǎn)的距離為6,則拋物線方程為( 。
A.y2=-2xB.y2=-4xC.y2=2xD.y2=-4x或y2=-36x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知tanα=2.
(1)求sinα;
(2)$\frac{2sinα-cosα}{2sinα+cosα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知拋物線C:y2=2px(p>0),上的點(diǎn)M(1,m)到其焦點(diǎn)F的距離為2,
(Ⅰ)求C的方程;并求其準(zhǔn)線方程;
(II)已知A (1,-2),是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線L,使得直線L與拋物線C有公共點(diǎn),且直線OA與L的距離等于$\frac{\sqrt{5}}{5}$?若存在,求直線L的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知M={(x,y)|y=x2+1,x∈R},N={(x,y)|y=x+1,x∈R},則M∩N={(0,1),(1,2)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若關(guān)于x的不等式ax2+bx+c<0的解集為({-∞,-1})∪(${\frac{1}{2}$,+∞),則不等式cx2-bx+a<0的解集為( 。
A.(-1,2)B.(-∞,-1)∪(2,+∞)C.(-2,1)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C的對邊分別為a,b,c,且b2+c2-a2=bc.
(1)求角A的大;
(2)若a=$\sqrt{7}$,且△ABC的面積為$\frac{{3\sqrt{3}}}{2}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an} 為等比數(shù)列,等差數(shù)列{bn} 的前n 項(xiàng)和為Sn (n∈N* ),且滿足:S13=208,S9-S7=41,a1=b2,a3=b3
(1)求數(shù)列{an},{bn} 的通項(xiàng)公式;
(2)設(shè)Tn=a1b1+a2b2+…+anbn (n∈N* ),求Tn; 
(3)設(shè)cn=$\left\{\begin{array}{l}{{a}_{n},n為奇數(shù)}\\{_{n},n為偶數(shù)}\end{array}\right.$,問是否存在正整數(shù)m,使得cm•cm+1•cm+2+8=3(cm+cm+1+cm+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某重點(diǎn)高中擬把學(xué)校打造成新型示范高中,為此制定了學(xué)生“七不準(zhǔn)”,“一日三省十問”等新的規(guī)章制度.新規(guī)章制度實(shí)施一段時間后,學(xué)校就新規(guī)章制度隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,調(diào)查卷共有10個問題,每個問題10分,調(diào)查結(jié)束后,按分?jǐn)?shù)分成5組:[50,60),60,70),[70,80),[80,90),[90,100],并作出頻率分布直方圖與樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中的x、y的值;
(2)在選取的樣本中,從分?jǐn)?shù)在70分以下的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行座談會,求所抽取的2名學(xué)生中恰有一人得分在[50,60)內(nèi)的概率.
5
6
7
8
9
3  4



1  2  3  4  5  6   7  8

查看答案和解析>>

同步練習(xí)冊答案