y=Asin(ωx+φ)的曲線最高點為(2,
2
),離它最近的一個最低點是(10,-
2
),則它的解析式為( 。
A、f(x)=
2
sin(
x
8
+
π
4
B、f(x)=
2
sin(
π
8
x+
π
4
C、f(x)=
2
sin(
x
8
-
π
4
)
D、f(x)=-
2
sin(
π
8
x-
π
4
)
考點:正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,可得f(x)的解析式.
解答: 解:由題意可得A=
2
1
2
T=10-2=8=
π
ω
,求得ω=
π
8

再根據(jù)五點法作圖可得
π
8
×2+φ=
π
2
,求得φ=
π
4

∴f(x)=
2
sin(
π
8
x+
π
4
),
故選:B.
點評:本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某個幾何體的三視圖如下,根據(jù)圖中標出的尺寸(單位:cm),可得這個幾何體的體積是( 。
A、12cm3
B、24cm3
C、
24
3
cm3
D、40cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓O1和圓O2是兩個定圓,動圓P與這兩個定圓都相切,則圓P的圓心軌跡可能是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知8b=5c,C=2B,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2k-1)x+2在R上是減函數(shù),則實數(shù)k的取值范圍為(  )
A、k<-
1
2
B、k>-
1
2
C、k<
1
2
D、k>
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n2+n,n∈N*).
(1)證明:數(shù)列{
an
n
}是等差數(shù)列;
(2)設(shè)an=(
2nbn
32n+1
2,求正項數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn=n2+2n.數(shù)列{bn}中,b1=1,它的第n項bn是數(shù)列{an}的第bn-1項(n≥2).
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的通項公式;
(3)若對任意的n∈N*,不等式
1
b1+1
+
1
b2+1
+
1
b3+1
+…+
1
bn+1
<m2-m+1恒成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M過定點(2,0)且圓心M在拋物線y2=4x上運動,若y軸截圓M所得的弦長為AB,則弦長|AB|等于( 。
A、4B、3
C、2D、與點M位置有關(guān)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,
1
3
S3
1
4
S4的等比中項與等差中項分別為
1
5
S5和1,求此數(shù)列的通項公式.

查看答案和解析>>

同步練習(xí)冊答案