【題目】已知曲線的參數(shù)方程為為參數(shù)),當(dāng)時,曲線上對應(yīng)的點為.以原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(I)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(II)設(shè)曲線的公共點為,求的值.

【答案】I的普通方程為,的直角坐標(biāo)方程為;(II.

【解析】

試題分析:I)消去參數(shù)即得曲線的普通方程,根據(jù)二倍角公式及,消去得到曲線的直角坐標(biāo)方程;(II)易求曲線的參數(shù)方程為,代入曲線的直角坐標(biāo)方程得到關(guān)于的一元二次方程,根據(jù)韋達定理即可求得的值.

試題解析:(I)因為曲線的參數(shù)方程為為參數(shù)),

所以曲線的普通方程為

又曲線的極坐標(biāo)方程為

所以曲線的直角坐標(biāo)方程為

(II)當(dāng)時,,,所以點

由(I)知曲線是經(jīng)過點的直線,設(shè)它的傾斜角為,則

所以,,

所以曲線的參數(shù)方程為為參數(shù)),

將上式代入,得,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形, 平面 分別為的中點,且.

(1)求證:平面平面;

(2)求證:平面平面;

(3)求三棱錐與四棱錐的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+a2.

(I)若f(x)在x=1處有極值10,求a,b的值;

(II)若當(dāng)a=-1時,f(x)<0在x∈[1,2]恒成立,求b的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有偶數(shù)個球,其中紅球、黑球各占一半,甲、乙、丙是三個空盒.每次從袋中任取兩個球,將其中一個球放入甲盒,如果這個球是紅球,就將另一個球放入乙盒,否則就放入丙盒.重復(fù)上述過程,直到袋中所有球都放入盒中,則( )

A. 乙盒中紅球與丙盒中黑球一樣多

B. 乙盒中黑球不多于丙盒中黑球

C. 乙盒中紅球不多于丙盒中紅球

D. 乙盒中黑球與丙盒中紅球一樣多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2015年12月,京津冀等地數(shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來最嚴(yán)重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數(shù)據(jù)如表:

時間

星期一

星期二

星期三

星期四

星期五

星期六

星期七

車流量(萬輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)由散點圖知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;

(2)(i)利用(1)所求的回歸方程,預(yù)測該市車流量為8萬輛時的濃度;

(ii)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬輛以內(nèi)?(結(jié)果以萬輛為單位,保留整數(shù))

參考公式:回歸直線的方程是,其中, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水泥廠銷售工作人員根據(jù)以往該廠的銷售情況,繪制了該廠日銷售量的頻率分布直方圖,如圖所示:

將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨立.

(1)求未來3天內(nèi),連續(xù)2天日銷售量不低于8噸,另一天日銷售量低于8噸的概率;

(2)用表示未來3天內(nèi)日銷售量不低于8噸的天數(shù),求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為

1)求曲線的直角坐標(biāo)方程并指出其形狀;

2)設(shè)是曲線上的動點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象交于B、C兩點,B(2,m)且m<2,正方形ABCD的頂點A、D在坐標(biāo)軸上。

⑴ 求, 的值;

⑵ 直接寫出時, 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:如果函數(shù)在定義域內(nèi)給定區(qū)間上存在),滿足,則稱函數(shù)上的“平均值函數(shù)”, 是它的一個均值點.如上的平均值函數(shù),0就是他的均值點.

(1)判斷函數(shù)在區(qū)間上是否為平均值函數(shù)?若是,求出它的均值點;若不是,請說明理由;

(2)若函數(shù)是區(qū)間上的平均值函數(shù),試確定實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案