【題目】已知曲線的參數(shù)方程為(為參數(shù)),當(dāng)時,曲線上對應(yīng)的點為.以原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(I)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(II)設(shè)曲線與的公共點為,,求的值.
【答案】(I)的普通方程為,的直角坐標(biāo)方程為;(II).
【解析】
試題分析:(I)消去參數(shù)即得曲線的普通方程,根據(jù)二倍角公式及,消去得到曲線的直角坐標(biāo)方程;(II)易求曲線的參數(shù)方程為,代入曲線的直角坐標(biāo)方程得到關(guān)于的一元二次方程,根據(jù)韋達定理即可求得的值.
試題解析:(I)因為曲線的參數(shù)方程為(為參數(shù)),
所以曲線的普通方程為.
又曲線的極坐標(biāo)方程為,
所以曲線的直角坐標(biāo)方程為
(II)當(dāng)時,,,所以點.
由(I)知曲線是經(jīng)過點的直線,設(shè)它的傾斜角為,則,
所以,,
所以曲線的參數(shù)方程為(為參數(shù)),
將上式代入,得,
所以
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點,且.
(1)求證:平面平面;
(2)求證:平面平面;
(3)求三棱錐與四棱錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+a2.
(I)若f(x)在x=1處有極值10,求a,b的值;
(II)若當(dāng)a=-1時,f(x)<0在x∈[1,2]恒成立,求b的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有偶數(shù)個球,其中紅球、黑球各占一半,甲、乙、丙是三個空盒.每次從袋中任取兩個球,將其中一個球放入甲盒,如果這個球是紅球,就將另一個球放入乙盒,否則就放入丙盒.重復(fù)上述過程,直到袋中所有球都放入盒中,則( )
A. 乙盒中紅球與丙盒中黑球一樣多
B. 乙盒中黑球不多于丙盒中黑球
C. 乙盒中紅球不多于丙盒中紅球
D. 乙盒中黑球與丙盒中紅球一樣多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年12月,京津冀等地數(shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來最嚴(yán)重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數(shù)據(jù)如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
車流量(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的濃度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點圖知與具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
(2)(i)利用(1)所求的回歸方程,預(yù)測該市車流量為8萬輛時的濃度;
(ii)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬輛以內(nèi)?(結(jié)果以萬輛為單位,保留整數(shù))
參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水泥廠銷售工作人員根據(jù)以往該廠的銷售情況,繪制了該廠日銷售量的頻率分布直方圖,如圖所示:
將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨立.
(1)求未來3天內(nèi),連續(xù)2天日銷售量不低于8噸,另一天日銷售量低于8噸的概率;
(2)用表示未來3天內(nèi)日銷售量不低于8噸的天數(shù),求隨機變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程并指出其形狀;
(2)設(shè)是曲線上的動點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖象交于B、C兩點,B(2,m)且m<2,正方形ABCD的頂點A、D在坐標(biāo)軸上。
⑴ 求, 的值;
⑵ 直接寫出時, 的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果函數(shù)在定義域內(nèi)給定區(qū)間上存在(),滿足,則稱函數(shù)是上的“平均值函數(shù)”, 是它的一個均值點.如是上的平均值函數(shù),0就是他的均值點.
(1)判斷函數(shù)在區(qū)間上是否為平均值函數(shù)?若是,求出它的均值點;若不是,請說明理由;
(2)若函數(shù)是區(qū)間上的平均值函數(shù),試確定實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com