設(shè)命題p:“對(duì)任意的x∈R,x2+2x>m”,
命題q:“存在x∈R,使x2-2mx+3-2m=0”.
如果命題p∨q為真,命題p∧q為假,求實(shí)數(shù)m的取值范圍.
考點(diǎn):復(fù)合命題的真假
專題:簡(jiǎn)易邏輯
分析:首先求出命題p所符合的解集,進(jìn)一步求出命題q的解集,利用且是命題和或是命題進(jìn)一步求出結(jié)果.
解答: 解:命題p:“對(duì)任意的x∈R,x2+2x>m”,
只需滿足(x2+2x)min>m即可.
所以:設(shè)f(x)=x2+2x=(x+1)2-1,
由于x∈R,所以f(x)min=-1,
即m<-1;
命題q:“存在x∈R,使x2-2mx+3-2m=0”.
只需滿足x2-2mx+3-2m=0有解即可,
所以:△=4m2-4(3-2m)≥0,
解得:m≥1或m≤-3.
命題p∨q為真,命題p∧q為假,
所以:①p真q假,
則:
m<-1
-3<m<1
,
解得:-3<m<-1;
②p假q真,
則:
m≥-1
m≥1或m≤-3

解得:m≥1;
綜上所述:m的取值范圍為:m≥1或-3<m<-1.
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):復(fù)合命題的應(yīng)用,且是命題和或是命題的應(yīng)用,不等式組的應(yīng)用,屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-2
4-ax
-1(a>0且a≠1).
(1)求函數(shù)f(x)的定義域、值域;
(2)求實(shí)數(shù)a的取值范圍,使得函數(shù)f(x)滿足:當(dāng)定義域?yàn)閇1,+∞)時(shí),f(x)≥0恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果雙曲線的焦距、虛軸長(zhǎng)、實(shí)軸長(zhǎng)成等比數(shù)列,則離心率e為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2+bx+c且f(-2)=f(4),則比較f(1)、f(-1)與c的大小結(jié)果為(用“<”連接起來(lái))
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻率分布表和頻率分布直方圖:
分組頻數(shù)頻率
[0,2)60.06
[2,4)80.08
[4,6)170.17
[6,8)200.20
[8,10)
[10,12)140.14
[12,14)6
[14,16)20.02
[16,18)0.02
  合計(jì)1001.00
(Ⅰ)補(bǔ)全頻率分布表,并求頻率分布直方圖中的a,b.
(Ⅱ)若該校有2000人,現(xiàn)需調(diào)查長(zhǎng)時(shí)間閱讀對(duì)視力的影響程度,閱讀時(shí)間不低于14小時(shí)的學(xué)生應(yīng)抽取多少人?
(Ⅲ)試估計(jì)樣本的100名學(xué)生該周閱讀時(shí)間的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若c=
6
,C=60°,a=2,則A=
 
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定點(diǎn)F1(0,-3)、F2(0,3)動(dòng)點(diǎn)P滿足條件|PF1|-a=
9
a
-
|PF2|(a>0)則點(diǎn)P的軌跡是( 。
A、橢圓B、線段
C、不存在D、橢圓或線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心在直線y=x+1上,半徑為
2
,且圓C經(jīng)過點(diǎn)P(5,4)和點(diǎn)Q(3,6).
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)求過點(diǎn)A(1,0)且與圓C相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知z∈C,
.
z
為z的共軛復(fù)數(shù),若
.
ziz
1
.
z
.
=0(z≠0)(i是虛數(shù)單位),則z=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案