15.在正方體ABCD-A1B1C1D1中,$\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{C{C}_{1}}$=( 。
A.$\overrightarrow{CA}$B.$\overrightarrow{AC}$C.$\overrightarrow{A{C}_{1}}$D.$\overrightarrow{A{B}_{1}}$

分析 根據(jù)空間向量的線性運算法則,進行計算即可.

解答 解:如圖所示,
正方體ABCD-A1B1C1D1中,

$\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{C{C}_{1}}$=$\overrightarrow{AC}$+$\overrightarrow{{CC}_{1}}$=$\overrightarrow{{AC}_{1}}$.
故選:C.

點評 本題考查了空間向量的線性運算問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知點A、B、C、D在同一球面上,AB=BC=$\sqrt{2}$,AC=2,DB⊥平面ABC,四面體ABCD的體積為$\frac{2}{3}$,則這個球的體積為( 。
A.B.$\frac{8\sqrt{2}π}{3}$C.16πD.$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知實數(shù)t滿足關系式loga$\frac{t}{{{a^3}_{\;}}}={log_t}$$\frac{y}{a^3}$(a>0且a≠1,t>0且t≠1)
(1)令t=ax,求y=f(x)的表達式;
(2)在(1)的條件下若x∈(0,2]時,y有最小值8,求a和x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.小龍與小虎約好國慶節(jié)去天柱山游玩,決定十月一日早晨7:45到8:15在高河新車站會面,并約定先到者等候另一人15分鐘,若未等到,可直接乘車前往天柱山,求小龍與小虎一同前往天柱山的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.f(x)=2+tanx,在($\frac{π}{4}$,f($\frac{π}{4}$))處的切線方程$y-3=2(x-\frac{π}{4})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{3x}{2x+3}$,數(shù)列{an}滿足a1=1,an+1=f(an),n∈N*
(1)求a2,a3,a4的值;
(2)求證:數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列;
(3)設數(shù)列{bn}滿足bn=an-1•an(n≥2),b1=3,Sn=b1+b2+…+bn,若${S_n}<\frac{m-2014}{2}$對一切n∈N*成立,求最小正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦點分別為F1,F(xiàn)2,過F1的直線在左支相交于A、B兩點.如果|AF2|+|BF2|=2|AB|,那么|AB|=4a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如果方程${x^2}+\frac{y^2}{k}=1$表示焦點在y軸上的橢圓,那么實數(shù)k的取值范圍是( 。
A.(0,+∞)B.(0,2)C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.將二進制數(shù)10101(2)化為四進制數(shù),結果為111(4);918與714的最大公約數(shù)為102.

查看答案和解析>>

同步練習冊答案