已知函數(shù)(其中為常數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)時(shí),設(shè)函數(shù)的3個(gè)極值點(diǎn)為,且.
證明:.

(Ⅰ)單調(diào)減區(qū)間為,;增區(qū)間為.
(Ⅱ)利用導(dǎo)數(shù)研究得到,所以,
當(dāng)時(shí),,
∴ 函數(shù)的遞增區(qū)間有,遞減區(qū)間有,,
此時(shí),函數(shù)有3個(gè)極值點(diǎn),且;
當(dāng)時(shí),
通過構(gòu)造函數(shù),證得當(dāng)時(shí),.

解析試題分析:(Ⅰ)
可得.列表如下:







-
-
0
+



極小值

單調(diào)減區(qū)間為,;增區(qū)間為.  5分
(Ⅱ)由題,
對(duì)于函數(shù),有
∴函數(shù)上單調(diào)遞減,在上單調(diào)遞增
∵函數(shù)有3個(gè)極值點(diǎn),
從而,所以
當(dāng)時(shí),,,
∴ 函數(shù)的遞增區(qū)間有,遞減區(qū)間有,,
此時(shí),函數(shù)有3個(gè)極值點(diǎn),且
∴當(dāng)時(shí),是函數(shù)的兩個(gè)零點(diǎn),  9分
即有,消去   
,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中常數(shù)
(1)求的單調(diào)區(qū)間;
(2)如果函數(shù)在公共定義域D上,滿足,那么就稱 為的“和諧函數(shù)”.設(shè),求證:當(dāng)時(shí),在區(qū)間上,函數(shù)的“和諧函數(shù)”有無窮多個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)當(dāng)a=18時(shí),求函數(shù)的單調(diào)區(qū)間;
(II)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,其中R .
(1)討論的單調(diào)性;
(2)若在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù), 當(dāng)時(shí),若存在,對(duì)于任意的,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的解析式及減區(qū)間;
(2)若的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求的最小值;
(Ⅱ)若對(duì)所有都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
⑴若的極值點(diǎn),求的值;
⑵若的圖象在點(diǎn)處的切線方程為,求在區(qū)間上的最大值;
⑶當(dāng)時(shí),若在區(qū)間上不單調(diào),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知 
⑴若的極值點(diǎn),求實(shí)數(shù)值。
⑵若對(duì)都有成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案