17.已知數(shù)列{an},a1=a(a∈R),an+1=$\frac{2{a}_{n}+1}{{a}_{n}+2}$(n∈N*).
(1)若數(shù)列{an}從第二項(xiàng)起每一項(xiàng)都大于1,求實(shí)數(shù)a的取值范圍;
(2)若a=-3,記Sn是數(shù)列{an}的前n項(xiàng)和,證明:Sn<n+$\frac{6}{7}$.

分析 (1)由題意可得當(dāng)n≥2時(shí),an+1=$\frac{2{a}_{n}+1}{{a}_{n}+2}$=2-$\frac{3}{{a}_{n}+2}$>2-$\frac{3}{1+2}$=1,所以只需a2=$\frac{2a+1}{a+1}$>1,解不等式即可得到所求范圍;
(2)求得當(dāng)n≥4時(shí),an-1<(a3-1)•($\frac{1}{3}$)n-3,即有an<1+(a3-1)•($\frac{1}{3}$)n-3=1+$\frac{4}{7}$•($\frac{1}{3}$)n-3,運(yùn)用等比數(shù)列的求和公式和不等式的性質(zhì),可得Sn<n+$\frac{6}{7}$;再驗(yàn)證n=1,2,3也成立.

解答 解:(1)數(shù)列{an}從第二項(xiàng)起每一項(xiàng)都大于1,可得
當(dāng)n≥2時(shí),an+1=$\frac{2{a}_{n}+1}{{a}_{n}+2}$=2-$\frac{3}{{a}_{n}+2}$>2-$\frac{3}{1+2}$=1,
所以只需a2=$\frac{2a+1}{a+1}$>1,解得a>1或a<-2:
(2)證明:由(1)可得,當(dāng)n≥2時(shí),an+1-1=$\frac{2{a}_{n}+1}{{a}_{n}+2}$-1
=$\frac{{a}_{n}-1}{{a}_{n}+2}$<$\frac{{a}_{n}-1}{1+2}$=$\frac{1}{3}$(an-1),
即有當(dāng)n≥4時(shí),an-1<(a3-1)•($\frac{1}{3}$)n-3,
即有an<1+(a3-1)•($\frac{1}{3}$)n-3=1+$\frac{4}{7}$•($\frac{1}{3}$)n-3
此時(shí)Sn<-3+5+(1+$\frac{4}{7}$)+[1+$\frac{4}{7}$•($\frac{1}{3}$)]+…+[1+$\frac{4}{7}$•($\frac{1}{3}$)n-3]
=n+$\frac{\frac{4}{7}(1-\frac{1}{{3}^{n-2}})}{1-\frac{1}{3}}$=n+$\frac{6}{7}$[1-($\frac{1}{3}$)n-2]<n+$\frac{6}{7}$,
易證,當(dāng)n=1,2,3,Sn<n+$\frac{6}{7}$成立.
綜上可得,對(duì)任意的正整數(shù)n,均有Sn<n+$\frac{6}{7}$.

點(diǎn)評(píng) 本題考查已知數(shù)列的通項(xiàng)的特點(diǎn),求參數(shù)的范圍,注意運(yùn)用不等式的性質(zhì),同時(shí)考查等比數(shù)列的求和公式的運(yùn)用,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.圓x2+y2-2x+4y+1=0的半徑為( 。
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果在一次實(shí)驗(yàn)中,測(cè)得數(shù)對(duì)(x,y)的四組數(shù)值分別是A(1,2),B(2,3),C(3,6),D(4,7),則y與x之間的回歸直線方程是( 。
A.$\widehat{y}$=x+1.9B.$\widehat{y}$=1.8xC.$\widehat{y}$=0.95x+1.04D.$\widehat{y}$=1.05x-0.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在三角形ABC中,角A,B,C所對(duì)的邊分別是a、b、c,且sin2B=sin2A+sin2C-sinAsinC.
(1)求角B的值;
(2)若b=$\sqrt{3}$,S△ABC=$\frac{\sqrt{3}}{2}$,求$\overrightarrow{BA}$•$\overrightarrow{BC}$及a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.P,Q分別為直線3x+4y-12=0與6x+8y+6=0上任一點(diǎn),則|PQ|的最小值為(  )
A.$\frac{9}{5}$B.3C.$\frac{18}{5}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)拋物線y=$\frac{1}{4}$x2上一點(diǎn)P到x軸的距離是2,則點(diǎn)P到該拋物線焦點(diǎn)的距離是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)y=x3與y=2x+1的圖象的交點(diǎn)為(x0,y0),則x0所在的區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)命題p:實(shí)數(shù)x滿足x2-(a+$\frac{1}{a}$)x+1<0,其中a>1;命題q:實(shí)數(shù)x滿足x2-4x+3≤0.
(1)若a=2,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x-4),x>4}\\{{2}^{x-1},x≤4}\end{array}\right.$,求下列各式的值:
(1)f(-1)+f(0)+f(1);
(2)f(6)+f(8);
(3)f(f(4)).

查看答案和解析>>

同步練習(xí)冊(cè)答案