12.下列命題中假命題是(  )
A.?x,y∈R,使sin(x+y)=sinx+siny成立
B.?x∈R,使(x-1)2≤0成立
C.x+y>2且xy>1是x>1且y>1成立的充要條件
D.?x∈R,使2x2-2x+1>0成立

分析 A,?x=0,y=0∈R,使得sin(0+0)=sin0+sin0;
B,?x=0,使(x-1)2≥0成立;
C,“x>1且y>1”能推出“x+y>2且xy>1”,“x+y>2且xy>1”推不出“x>1且y>1”,例如:x=4,y=-1,
D,由△<0,可得?x∈R,使2x2-2x+1>0成立.

解答 對于A,?x=0,y=0∈R,使得sin(0+0)=sin0+sin0,可判斷A正確;
對于B,?x=0,使(x-1)2≥0成立,故B正確;
對于C,“x>1且y>1”能推出“x+y>2且xy>1”,“x+y>2且xy>1”推不出“x>1且y>1”,例如:x=4,y=-1,故C錯,
對于D,∵△<0,∴?x∈R,使2x2-2x+1>0成立,故D正確.
故選:C.

點評 本題考查了含有量詞的命題真假判定,充要條件的判定,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.${∫}_{1}^{2}$$\frac{1}{x}$dx=( 。
A.ln2B.2ln2C.-ln2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=(2+x)2-3x,則f′(1)為( 。
A.6B.0C.3D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=x2+aln(x+1).
(1)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(2)若函數(shù)y=f(x)有兩個極值點x1,x2,且x1<x2,求證:0<$\frac{f({x}_{2})}{{x}_{1}}$<-$\frac{1}{2}$+ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知拋物線C:y2=8x的焦點為F,準(zhǔn)線為1,Q是直線l上的一點,P是直線QF與C的一個交點,若$\overrightarrow{QF}$=4$\overrightarrow{PF}$,則△POF(O為坐標(biāo)原點)的面積為( 。
A.2B.2$\sqrt{3}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=ax+(x+1)ln(x+1).
(1)a=0時,求f(x)的單調(diào)遞減區(qū)間;
(2)當(dāng)a≥-1時,對任意的x≥1,有f(x)≥3成立,求a的取值范圍;
(3)討論函數(shù)f(x)正數(shù)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1的右焦點到直線$\sqrt{2}$x-y=0的距離是:$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知復(fù)數(shù)z=1+mi(i是虛數(shù)單位,m∈R),且$\overline z•(3+i)$為純虛數(shù)($\overline z$是z的共軛復(fù)數(shù)).
(Ⅰ)設(shè)復(fù)數(shù)${z_1}=\frac{m+2i}{1-i}$,求|z1|;
(Ⅱ)設(shè)復(fù)數(shù)${z_2}=\frac{{a-{i^{2017}}}}{z}$,且復(fù)數(shù)z2所對應(yīng)的點在第四象限,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)的展開式中,含x7的項的系數(shù)是-36.

查看答案和解析>>

同步練習(xí)冊答案