17.設(shè)函數(shù)f(x)=ax+(x+1)ln(x+1).
(1)a=0時(shí),求f(x)的單調(diào)遞減區(qū)間;
(2)當(dāng)a≥-1時(shí),對任意的x≥1,有f(x)≥3成立,求a的取值范圍;
(3)討論函數(shù)f(x)正數(shù)零點(diǎn)的個(gè)數(shù).

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的遞減區(qū)間即可;
(2)求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性求出f(x)的最小值,求出a的范圍即可;
(3)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的正數(shù)零點(diǎn)的個(gè)數(shù).

解答 解:(1)a=0時(shí),f(x)=(x+1)ln(x+1),
f′(x)=1+ln(x+1),
若f′(x)<0,則-1<x<$\frac{1}{e}$-1,
則f(x)在(-1,$\frac{1}{e}$-1)遞減;
(2)f′(x)=a+1+ln(x+1),
x≥1,a≥-1時(shí),f′(x)>0恒成立,f(x)在[1,+∞)遞增,
則f(x)min=f(1)≥3,即a+2ln2≥3,
∴a≥3-2ln2;
(3)f′(x)=a+1+ln(x+1),
①a≥-1時(shí),x>0時(shí),恒有f′(x)>0,
此時(shí),f(x)在(0,+∞)遞增,又f(0)=0,
∴f(x)無正零點(diǎn),
②a<-1時(shí),f′(x)=0,解得:x=e-a-1-1,
故x∈(0,e-a-1-1)時(shí),f′(x)<0,f(x)遞減,
x∈(e-a-1-1,+∞)時(shí),f′(x)>0,f(x)遞增,
故f(x)min=f(e-a-1-1)=-a-e-a-1<0,
又f(0)=0,x→+∞時(shí),f(x)→+∞,
故此時(shí),f(x)有且只有1個(gè)正零點(diǎn),
綜上,a≥-1時(shí),函數(shù)f(x)無正零點(diǎn),
a<-1時(shí),函數(shù)f(x)有1個(gè)正零點(diǎn).

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知等差數(shù)列{an}中,a6+a10=16,a4=2,則a6的值是( 。
A.15B.10C.5D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=sinx+cos(x+$\frac{π}{6}$),x∈R
(Ⅰ)求函數(shù)f(x)的最小正周期及其在區(qū)間[0,$\frac{π}{2}$]上的值域;
(Ⅱ)記△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若f(A)=$\frac{\sqrt{3}}{2}$,且a=$\frac{\sqrt{3}}{2}b$,求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)f(x)=2sin(x$+\frac{π}{4}$)的圖象上各點(diǎn)的橫坐標(biāo)縮小為原來的$\frac{1}{2}$(縱坐標(biāo)不變),再向右平移φ(φ>0)個(gè)單位后得到的圖象關(guān)于直線x=$\frac{π}{2}$對稱,則φ的最小值是( 。
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{3}{4}π$D.$\frac{3}{8}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中假命題是( 。
A.?x,y∈R,使sin(x+y)=sinx+siny成立
B.?x∈R,使(x-1)2≤0成立
C.x+y>2且xy>1是x>1且y>1成立的充要條件
D.?x∈R,使2x2-2x+1>0成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}(1-a)$x2-ax+$\frac{1}{3}$(a>0),當(dāng)0≤x≤a時(shí),f(x)的值域?yàn)閇-$\frac{1}{3}$,$\frac{1}{3}$],則a=( 。
A.2B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.五名同學(xué)站成一排,若甲與乙相鄰,且甲與丙不相鄰,則不同的站法有( 。
A.36種B.60種C.72種D.108種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.α,β為兩個(gè)不同的平面,m,n為兩條不同的直線,下列命題中正確的是( 。
①若α∥β,m?α,則m∥β;
②若m∥α,n?α,則m∥n;
③若α⊥β,α∩β=n,m⊥n,則m⊥β;
④若n⊥α,n⊥β,m⊥α,則m⊥β.
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow m=(\sqrt{3}sintx,-{cos^2}tx),\overrightarrow n=(costx,1)(t>0)$,把函數(shù)f(x)=$\overrightarrow m•\overrightarrow n+\frac{1}{2}$化簡為f(x)=Asin(ωx+ϕ)+B的形式后,利用“五點(diǎn)法”畫y=f(x)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入的部分?jǐn)?shù)據(jù)如下表所示:
(1)請直接寫出①處應(yīng)填的值,并求t的值及函數(shù)y=f(x)在區(qū)間$[-\frac{π}{2},\frac{π}{6}]$上的單增區(qū)間、單減區(qū)間;
(2)設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知$f(\frac{A}{2}+\frac{π}{6})=1,c=2,a=\sqrt{7}$,求$\overrightarrow{BA}•\overrightarrow{BC}$
x$\frac{π}{12}$$\frac{7π}{12}$
ωx+ϕ0$\frac{π}{2}$$\frac{3π}{2}$
f(x)010-10

查看答案和解析>>

同步練習(xí)冊答案