已知函數(shù)f(x)=x-5+
25
x-1
(x>1)
的最小值為n,則二項式(x-
1
x
n展開式中x2項的系數(shù)為 ( 。
A、15B、-15
C、30D、-30
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:利用基本不等式求得f(x)的最小值n=6,在二項展開式的通項公式中,令x的冪指數(shù)等于2,求出r的值,即可求得二項式(x-
1
x
6展開式中x2項的系數(shù).
解答: 解:函數(shù)f(x)=x-5+
25
x-1
=(x-1)+
25
x-1
-4,由x>1,利用基本不等式可得f(x)≥2
25
-4=6,
當且僅當x-1=
25
x-1
,即x=6時,取等號,故f(x)的最小值為n=6,
則二項式(x-
1
x
6展開式的通項公式為Tr+1=
C
r
6
•(-1)r•x6-2r,令6-2r=2,求得r=2,
故二項式(x-
1
x
6展開式中x2項的系數(shù)為
C
2
6
=15,
故選:A.
點評:本題主要考查基本不等式,二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知過圓O:x2+y2=1上一動點M作平行與y軸的直線l,設直線l交與x軸于點N,
OQ
=
OM
+
ON
的點Q的軌跡為曲線N.
(1)求曲線方程;
(2)若過點(-3,0)的直線l與曲線N有兩個不同的交點,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y的約束條件為
x-y+1>0
2x+y-4<0
y≥-1
,則x2+(y+2)2的取值范圍是( 。
A、(
9
4
,5)
B、[1,5)
C、(
9
4
,17)
D、[1,17)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,∠A=2∠B,∠C為鈍角,且∠A、B、C所對的邊為a,b,c的長度均為整數(shù),則△ABC的周長最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(a+1)-
1
2
(10-2a)-
1
2
,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在圓x2+y2-2x=0上求一點P,使P到直線x+y+1=0的距離最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個頂點A(-1,0),B(1,0),C(3,2),其外接圓為圓H.對于線段BH上的任意一點P,若在以C為圓心的圓上都存在不同的兩點M,N,使得點M是線段PN的中點,則圓C的半徑r的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,頂點A(1,7),B(3,3),C(7,3),過B作BD⊥AC于D點,求D點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,以BC為直徑的半圓分別交AB,AC于點E,F(xiàn),且AC=2AE,那么
AF
AB
=
 
;∠A=
 

查看答案和解析>>

同步練習冊答案