考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由a
na
n+1=4S
n-1,可得當(dāng)n≥2時(shí),a
n-1a
n=4S
n-1-1,a
n≠0,兩式相減化為a
n+1-a
n-1=4,可得數(shù)列{a
n}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別為等差數(shù)列,進(jìn)而得出;
(2)b
n=
=
(-),利用“裂項(xiàng)求和”即可得出.
解答:
解:(1)∵a
na
n+1=4S
n-1,∴當(dāng)n≥2時(shí),a
n-1a
n=4S
n-1-1,a
na
n+1-a
n-1a
n+1=4a
n,
∵a
n≠0,∴a
n+1-a
n-1=4,
當(dāng)n=1時(shí),a
1a
2=4a
1-1,a
1=1,解得a
2=3,
∴數(shù)列{a
n}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別為等差數(shù)列,公差為4,首項(xiàng)分別為1,3.
∴當(dāng)n=2k-1(k∈N
*)為奇數(shù)時(shí),a
n=a
2k-1=1+4(k-1)=4k-3=2n-1;
當(dāng)n=2k(k∈N
*)為偶數(shù)時(shí),a
n=a
2k=3+4(k-1)=2n-1.
可得a
n=2n-1.
(2)b
n=
=
=
(-),
∴數(shù)列{b
n}的前n項(xiàng)和T
n=
[(1-)+(-)+…+
(-)]=
(1-)=
.
點(diǎn)評(píng):本題考查了遞推式的應(yīng)用、等差數(shù)列的定義及其通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.