6.設(shè)x>0,y>0,若xlg2,lg$\sqrt{2}$,ylg2成等差數(shù)列,則$\frac{1}{x}+\frac{16}{y}$的最小值為( 。
A.9B.16C.25D.32

分析 根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),等差中項(xiàng),基本不等式的性質(zhì)即可求出.

解答 解:∵xlg2,lg$\sqrt{2}$,ylg2成等差數(shù)列,
∴2lg$\sqrt{2}$=(x+y)lg2
∴x+y=1,
∴$\frac{1}{x}+\frac{16}{y}$=(x+y)($\frac{1}{x}+\frac{16}{y}$)=17+$\frac{y}{x}$+$\frac{16x}{y}$≥17+2$\sqrt{\frac{y}{x}•\frac{16x}{y}}$=17+8=25,當(dāng)且僅當(dāng)x=$\frac{1}{5}$,y=$\frac{4}{5}$時(shí)取等號(hào),
故則$\frac{1}{x}+\frac{16}{y}$的最小值為25,
故選:C.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì),等差中項(xiàng),基本不等式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.邊長(zhǎng)為10cm的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為x的小正方形,然后做成一個(gè)無蓋方盒.
(1)試把方盒的容積V,表示為x的函數(shù);
(2)x多大時(shí),方盒的容器的容積最大?并求出最大容積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在數(shù)列{an}中,a1=5,an+1=an+3,則數(shù)列{an}的通項(xiàng)公式an=( 。
A.5nB.3n+2C.2n+3D.5•3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,x<1}\\{4(x-a)(x-2a),x≥1}\end{array}\right.$
(1)若a=1,求f(x)的最小值;
(2)若f(x)恰有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}的通項(xiàng)公式an=3n-50,則前n項(xiàng)和Sn取最小值時(shí)的n為(  )
A.15B.16C.17D.$\frac{97}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為了研究玉米品種對(duì)產(chǎn)量的影響,某農(nóng)科院對(duì)一塊試驗(yàn)田種植的一批玉米共10000株的生長(zhǎng)情況進(jìn)行研究,現(xiàn)采用分層抽樣方法抽取50株作為樣本,統(tǒng)計(jì)結(jié)果如下:
高莖矮莖合計(jì)
圓粒111930
皺粒13720
合計(jì)242650
(1)現(xiàn)采用分層抽樣的方法,從這個(gè)樣本中取出10株玉米,則選取的圓粒玉米有多少株?
(2)根據(jù)對(duì)玉米生長(zhǎng)情況作出的統(tǒng)計(jì),是否能在犯錯(cuò)誤的概率不超過0.050的前提下認(rèn)為玉米的圓粒與玉米的高莖有關(guān)?(下面的臨界值表和公式可供參考)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=$\frac{1}{3}$x3-x2+ax在(0,2)內(nèi)無極值,則a的取值范圍是{a|a≤0或a>1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.用一個(gè)與圓柱母線成600角的平面截圓柱,截口為一個(gè)橢圓,則該橢圓的離心率為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.一橢圓上任一點(diǎn)P與橢圓上兩定點(diǎn)A(x0,y0),B(-x0,-y0)的連線的斜率之積是-$\frac{3}{4}$,則橢圓的離心率$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案