14.已知集合A={x|y=$\sqrt{x-4}$},B={x|-1≤2x-1≤0},則(∁RA)∩B=(  )
A.(4,+∞)B.$[0,\frac{1}{2}]$C.$(\frac{1}{2},4]$D.(1,4]

分析 求出A中x的范圍確定出A,求出B中不等式的解集確定出B,求出A補(bǔ)集與B的交集即可.

解答 解:集合A={x|y=$\sqrt{x-4}$}={x|x-4≥0}={x|x≥4},
B={x|-1≤2x-1≤0}={x|0≤x≤$\frac{1}{2}$},
∴∁RA={x|x<4}
∴(∁RA)∩B={x|0≤x≤$\frac{1}{2}$}=[0,$\frac{1}{2}$].
故選:B.

點評 本題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)全集U=R,集合A={x|x2-2x-3<0},B={x|0<x≤4}.
(1)求A∩B,A∪B;
(2)求(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若f(x)=x${\;}^{{{log}_2}3}}$,則f(2)=( 。
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知四邊形ABCD是邊長為1的正方形,PA⊥平面ABCD,N是PC的中點.  
(Ⅰ)若PA=1,求二面角B-PC-D的大小;
(Ⅱ)求AN與平面PCD所成角的正弦值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)f:x→|x|+1是非空集合A到非空集合B的映射,若A={-1,0,1}且集合B只有兩個元素,則B={1,2};若B={1,2},則滿足條件的集合A的個數(shù)是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)A={x|x2-4x+3≤0},B={x|2x-3<0},則圖中陰影部分表示的集合為( 。
A.(-3,-$\frac{3}{2}$)B.(-3,$\frac{3}{2}$)C.[1,$\frac{3}{2}$)D.($\frac{3}{2}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)時的定義域為R.當(dāng)x<0時,f(x)=x5-1;當(dāng)-1≤x≤1時,f(-x)=-f(x);當(dāng)x>0時,f(x+1)=f(x),則f(2016)═(  )
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知某服裝廠每天的固定成本是30000元,每天最大規(guī)模的生產(chǎn)量是m件.每生產(chǎn)一件服裝,成本增加100元,生產(chǎn)x件服裝的收入函數(shù)是R(x)=-$\frac{1}{3}$x2+400x,記L(x),P(x)分別為每天生產(chǎn)x件服裝的利潤和 平均利潤(平均利潤=$\frac{總利潤}{總產(chǎn)量}$).
(1)當(dāng)m=500時,每天生產(chǎn)量x為多少時,利潤L(x)有最大值;
(2)每天生產(chǎn)量x為多少時,平均利潤P(x)有最大值,并求P(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某小區(qū)提倡低碳生活,環(huán)保出行,在小區(qū)提供自行車出租.該小區(qū)有40輛自行車供小區(qū)住戶租賃使用,管理這些自行車的費(fèi)用是每日92元,根據(jù)經(jīng)驗,若每輛自行車的日租金不超過5元,則自行車可以全部出租,若超過5元,則每超過1元,租不出的自行車就增加2輛,為了便于結(jié)算,每輛自行車的日租金x元只取整數(shù),用f(x)元表示出租自行車的日純收入(日純收入=一日出租自行車的總收入-管理費(fèi)用)
(1)求函數(shù)f(x)的解析式及其定義域;
(2)當(dāng)租金定為多少時,才能使一天的純收入最大?

查看答案和解析>>

同步練習(xí)冊答案