在棱長為1的正方體內(nèi),有兩球相外切,并且又分別與正方體相內(nèi)切.
(1)求兩球的半徑之和;
(2)當(dāng)兩球的半徑是多少時,兩球體積之和最。
考點:球的體積和表面積
專題:空間位置關(guān)系與距離
分析:(1)利用ABCD為過球心的對角面,即可求兩球半徑之和.
(2)表示出兩球的體積之和,利用配方法,求兩球體積之和最。
解答: 解:(1)如圖,ABCD為過球心的對角面,AC=
3


設(shè)兩球半徑為R、r,則有R+r+
3
(R+r)=
3

所以R+r=
3-
3
2
;
(2)設(shè)兩球的體積之和為V,
則V=
4
3
π(R3+r3)=
4
3
π•
3-
3
2
[3R2-
3-
3
2
×R+
(3-
3
)2
4
],
所以當(dāng)R=r=
3-
3
4
時,V有最小值.
點評:本題是基礎(chǔ)題,考查棱錐的體積的求法,正方體的內(nèi)接體的知識,解題關(guān)鍵在八面體轉(zhuǎn)化為兩個正四棱錐,是?碱}型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,“∠C=90°”是“cosA-cosB=sinB-sinA”的( 。
A、充分不必要條件
B、充要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上單調(diào)遞減的奇函數(shù),則滿足不等式f[f(t-1)]<0的實數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某袋中有10個乒乓球,其中有7個新、3個舊球,從袋中任取3個來用,用后放回袋中(新球用后變?yōu)榕f球),記此時袋中舊球個數(shù)為X,求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)對任意實數(shù)x、y,恒有f(x)+f(y)=f(x+y),且當(dāng)x>0時,有f(x)<0.
(Ⅰ)求證:f(x)為奇函數(shù)且在R上是減函數(shù);
(Ⅱ)若正數(shù)x,y滿足
1
x
+
4
y
=1,且f(x)+f(y)+f(1-m)<0恒成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,過點F2作雙曲線C的一條漸近線的垂線,垂足為H,交雙曲線于點M且
F2M
=2
MH
,則雙曲線C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
,x∈R
(其中ω>0)
(I)求函數(shù)f(x)的值域;
(II)若函數(shù)y=f(x)的圖象與直線y=-1的兩個相鄰交點間的距離為
π
2
,求函數(shù)y=f(x)的單調(diào)增區(qū)間.
(Ⅲ)設(shè)g(x)=-4cos2x-sinx+m,若對任意x1∈R,總是存在x2∈[0,
π
2
],使得f(x1)≥g(x2),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
2
cosxsin(x+
π
4
).
(Ⅰ)求函數(shù)f(x)的最小正周期及最大值;
(Ⅱ)寫出函數(shù)f(x)在[0,π]上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在我市2015年“創(chuàng)建文明城市”知識競賽中,考評組從中抽取200份試卷進行分析,其分數(shù)的頻率分布直方圖如圖所示,則分數(shù)在區(qū)間[60,70)上的人數(shù)大約有
 
人.

查看答案和解析>>

同步練習(xí)冊答案