2.若向量$\overrightarrow a$與$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$則向量$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值為$\frac{\sqrt{2}}{2}$.

分析 利用向量的垂直關(guān)系求解即可.

解答 解:向量$\overrightarrow a$與$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,
可得:($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=0,
即:${\overrightarrow{a}}^{2}$$-\left|\overrightarrow{a}\right|\left|\overrightarrow\right|cos<\overrightarrow{a},\overrightarrow>$=0,
2-$\sqrt{2}×2$$cos<\overrightarrow{a},\overrightarrow>$=0,
解得$cos<\overrightarrow{a},\overrightarrow>$=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點(diǎn)評 本題考查斜率的數(shù)量積的應(yīng)用,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知正方體ABCD-A1B1C1D1的棱長為a,
(1)A1B與B1D1所成的角;
(2)CC1與BD1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.函數(shù)f(x)的定義域?yàn)镽,并滿足以下條件:
①對任意x∈R,有f(x)>0; ②對任意x、y∈R,有f(xy)=[f(x)]y;  ③f($\frac{1}{3}$)>1
(1)求f(0)的值;
(2)判斷f(x)的在R上單調(diào)性并說明理由;
(3)若f(2)=2,且x滿足f($\frac{1}{2}$)≤f(x)≤f(2),求函數(shù)y=2f(2log2x)+$\frac{1}{{f(2{{log}_2}x)}}$的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知y=ax-1-2(a>0且a≠1)恒過定點(diǎn)P,則P點(diǎn)的坐標(biāo)為(1,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=|2x-a|.
(1)若不等式f(x)≥5的解集為{x|x≤-2或x≥3},求實(shí)數(shù)a的值;
(2)若f(x)≥1-|x+1|恒成立,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)復(fù)數(shù)z滿足(1+2i)z=5i,則復(fù)數(shù)z為(  )
A.2+iB.-2+iC.2-iD.-2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤1}\\{x+y≥2}\\{y≤2}\end{array}\right.$,則目標(biāo)函數(shù)z=x2+y2的取值范圍是[2,13].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,角A、B、C所對的邊分別是a、b、c,M是BC的中點(diǎn),BM=2,AM=c-b,△ABC面積的最大值為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)p:“$\frac{a-1}{a-2}$≥0”,q:“圓x2+y2=a2(a>0)與直線3x+4y-5=0相交且與圓(x+3)2+(y+4)2=9外離”,則¬p是q的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

同步練習(xí)冊答案