15.有一算法流程圖如圖所示,該算法解決的是( 。
A.輸出不大于990且能被15整除的所有正整數(shù)
B.輸出不大于66且能被15整除的所有正整數(shù)
C.輸出67
D.輸出能被15整除且大于66的正整數(shù)

分析 由已知中的程序框圖,可得:n值依次為1,2,…,66,由a=15n得:a值依次為15,30,…,990,進(jìn)而得到答案.

解答 解:由已知中的程序框圖,可得:
n值依次為1,2,…,66,
由a=15n得:
a值依次為15,30,…,990,
故程序的功能是:
輸出不大于990且能被15整除的所有正整數(shù),
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.某種病毒經(jīng)30分鐘繁殖為原來的2倍,且已知病毒的繁殖規(guī)律為y=ekx(其中k為常數(shù),t表示時(shí)間,單位:小時(shí),y表示病毒個(gè)數(shù)),則經(jīng)過5小時(shí),1個(gè)病毒能繁殖為1024個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)y=f(x)是周期為2的周期函數(shù),且當(dāng)時(shí)x∈[-1,1]時(shí),f(x)=2|x|,則函數(shù)F(x)=f(x)-|lgx|的零點(diǎn)個(gè)數(shù)是( 。
A.9B.10C.11D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知f(x)=$\frac{{x}^{2}}{2x+1}$,f1(x)=f(x),fn(x)=$\underset{\underbrace{f(…f(x)…)}}{n個(gè)f}$,則${f_{10}}(\frac{1}{2})$=$\frac{1}{{{3^{1024}}-1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知菱形ABEF所在的平面與△ABC所在的平面相互垂直,AB=4,BC=$\sqrt{6}$,BC⊥BE,∠ABE=$\frac{π}{3}$.
(1)求證:BC⊥平面ABEF;
(2)求平面ACF與平面BCE所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{1}{2}cos({2x-φ})\;\;({0<φ<π})$,其圖象過點(diǎn)$({\frac{π}{6},\frac{1}{2}})$.
(1)求φ值;
(2)將函數(shù)y=f(x)圖象上各點(diǎn)橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求y=g(x)在x∈$[{0,\frac{π}{4}}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1(x∈R)
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若A是銳角△ABC的一個(gè)內(nèi)角,且滿足f(A)=$\frac{2}{3}$,求sin2A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)是定義在R上的函數(shù),f′(x)是其導(dǎo)函數(shù),若滿足f′(-x)=f′(x),f(x+2)=-f(x),則函數(shù)y=f(x)的圖象可能是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖是某年青年歌手大獎(jiǎng)賽中,七位評(píng)委為甲、乙兩名選手打出的分?jǐn)?shù)的莖葉圖(其中m為數(shù)字09中的一個(gè)).去掉一個(gè)最高分和一個(gè)最低分后,甲、乙兩名選手得分的平均數(shù)分別為a1,a2,則一定有( 。
A.a1>a2B.a1<a2
C.a1=a2D.a1,a2的大小與m的值有關(guān)

查看答案和解析>>

同步練習(xí)冊(cè)答案