A. | $\frac{π}{3}$,R2($\frac{1}{2}$+$\sqrt{2}$) | B. | $\frac{π}{4}$,R2($\frac{1}{2}$+$\sqrt{2}$) | C. | $\frac{π}{4}$,R2(1+$\sqrt{2}$) | D. | $\frac{π}{6}$,R2(1+$\sqrt{2}$) |
分析 連結(jié)OE,用θ表示出BC,OB,代入梯形面積公式即可得出f(θ),則g(θ)=R2(1+sinθ)cosθ+R2sinθ=R2(sinθ+cosθ+sinθcosθ),令sinθ+cosθ=t,利用換元法求出g(θ)的最值及對應(yīng)的θ.
解答 解:連結(jié)OE,在Rt△OBC中,BC=Rsinθ,OB=Rcosθ,
∴S梯形OBCE=$\frac{1}{2}$(Rsinθ+R)Rcosθ=$\frac{1}{2}$R2(1+sinθ)cosθ,
∴f(θ)=2S梯形OBCE=R2(1+sinθ)cosθ,θ∈(0,$\frac{π}{2}$).
則g(θ)=R2(1+sinθ)cosθ+R2sinθ=R2(sinθ+cosθ
+sinθcosθ),
令t=sinθ+cosθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$),則t∈(1,$\sqrt{2}$],
sinθcosθ=$\frac{{t}^{2}-1}{2}$,
∴g(θ)=R2($\frac{{t}^{2}-1}{2}$+t)=$\frac{{R}^{2}}{2}$[(t+1)2-2],
令h(t)=$\frac{{R}^{2}}{2}$[(t+1)2-2],則h(t)在(1,$\sqrt{2}$]上單調(diào)遞增,
∴當(dāng)t=$\sqrt{2}$,即θ=$\frac{π}{4}$時(shí),h(t)取得最大值($\frac{1}{2}$+$\sqrt{2}$)R2 .
故選:B.
點(diǎn)評(píng) 本題考查了函數(shù)模型的應(yīng)用,考查函數(shù)最值的計(jì)算及其幾何意義,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2014}{3}$ | B. | $\frac{2014}{9}$ | C. | $\frac{4028}{3}$ | D. | $\frac{4028}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 0 | C. | -$\frac{1}{2}$ | D. | -$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=\frac{1}{x+4}$ | B. | y=logπ|x| | C. | $y={x^{-\frac{2}{3}}}$ | D. | y=5-3x3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com