分析 (1)求出平面ODC1的一個(gè)法向量,證明$\overrightarrow n.\overrightarrow{{B_1}C}=0$,即可證明:B1C∥平面ODC1;
(2)設(shè)$\overrightarrow{{B_1}C}$、$\overrightarrow{DO}$分別為直線B1C與OD的方向向量,則由$\overrightarrow{{B_1}C}=(-1,0,-1)$,$\overrightarrow{DO}=(\frac{1}{2},\frac{1}{2},1)$得cos<$\overrightarrow{{B_1}C}$,$\overrightarrow{DO}$>,即可求異面直線B1C與OD夾角的余弦值;
(3)B1C到平面ODC1的距離$d=\frac{{|{\overrightarrow{DC}.\overrightarrow n}|}}{{|{\overrightarrow n}|}}=\frac{{\sqrt{3}}}{3}$.
解答 (1)證明:設(shè)平面ODC1的一個(gè)法向量為$\overrightarrow n=(x,y,z)$,
由 $\left\{\begin{array}{l}\overrightarrow n.\overrightarrow{DO}=0\\ \overrightarrow n.\overrightarrow{D{C_1}}=0\end{array}\right.$得$\left\{\begin{array}{l}\frac{1}{2}x+\frac{1}{2}y+z=0\\ y+z=0\end{array}\right.$,令y=1,則z=-1,x=1
所以$\overrightarrow n=(1,1,-1)$.
又$\overrightarrow{{B_1}C}=(-1,0,-1)$.從而$\overrightarrow n.\overrightarrow{{B_1}C}=0$
所以B1C∥平面ODC1.
(2)解:設(shè)$\overrightarrow{{B_1}C}$、$\overrightarrow{DO}$分別為直線B1C與OD的方向向量,
則由$\overrightarrow{{B_1}C}=(-1,0,-1)$,$\overrightarrow{DO}=(\frac{1}{2},\frac{1}{2},1)$得cos<$\overrightarrow{{B_1}C}$,$\overrightarrow{DO}$>=$-\frac{{\sqrt{3}}}{2}$.
所以兩異面直線B1C與OD的夾角θ的余弦值為$cosθ=\frac{{\sqrt{3}}}{2}$.
(3)由(1)知平面ODC1的一個(gè)法向量為$\overrightarrow n=(1,1,-1)$,
又$\overrightarrow{DC}=(0,1,0)$
所以B1C到平面ODC1的距離$d=\frac{{|{\overrightarrow{DC}.\overrightarrow n}|}}{{|{\overrightarrow n}|}}=\frac{{\sqrt{3}}}{3}$.
點(diǎn)評 本題考查空間向量的運(yùn)用,考查線面平行、線線角,點(diǎn)到平面的距離,正確運(yùn)用向量方法是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-7,3) | B. | (-5,2) | C. | (2,+∞) | D. | (-∞,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,$\frac{1}{2}$] | C. | [1,+∞) | D. | [$\frac{1}{2}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com