【題目】已知直線(為參數(shù)),曲線(為參數(shù))

1)設直線與曲線相交于兩點,求劣弧的弧長;

2)若把曲線上各點的橫坐標縮短為原來的,縱坐標縮短為原來的,得到曲線,設點是曲線上的一個動點,求點到直線的距離的最小值,及點坐標.

【答案】12)最小值為

【解析】

1)根據(jù)條件得到的普通方程以及曲線的直角坐標方程,兩方程聯(lián)立得到交點坐標即可計算出弦長,由此確定出劣弧長度;

2)根據(jù)坐標變換得到的曲線,將點坐標表示為參數(shù)形式,利用點到直線的距離公式以及三角恒等變換的內容,確定出距離的最小值以及此時的點坐標.

解(1)直線的普通方程為,曲線的普通方程為

聯(lián)立得得交點為,則,

所以的圓心和構成等邊三角形,劣弧的弧長;

2)曲線的參數(shù)方程為(為參數(shù)),

設點的坐標是,從而點到直線的距離為,

時,取得最小值,且最小值為

此時,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x),f(x)是其導函數(shù)且滿足f(x)+f(x)>2,f(1)=2,則不等式exf(x)>4+2ex的解集為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列滿足:,,其中

1)若,求數(shù)列的前項的和;

2)若

①求數(shù)列的通項公式;

②記數(shù)列的前項的和為,若無窮項等比數(shù)列始終滿足,求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(Ⅰ)求證:當時,

(Ⅱ)存在,使得成立,求a的取值范圍;

(Ⅲ)若恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù),下列說法正確的是( )

(1)的極大值點 ;(2)函數(shù)有且只有1個零點;(3)存在正實數(shù),使得恒成立 ;(4)對任意兩個正實數(shù),且,若,則

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若在定義域上不單調,求的取值范圍;

(2)設分別是的極大值和極小值,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓兩焦點分別為是橢圓在第一象限弧上一點,并滿足,過P作傾斜角互補的兩條直線分別交橢圓于兩點.

(1)求點坐標;

(2)求證:直線的斜率為定值;

(3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過曲線的左焦點作曲線的切線,設切點為,延長交曲線于點,其中有一個共同的焦點,若,則曲線的離心率為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的焦點為的準線與軸的交點為,點上的動點.當是等腰直角三角形時,其面積為2

1)求的方程;

2)延長AFC于點B,點MC的準線上的一點,設直線,的斜率分別是,證明:

查看答案和解析>>

同步練習冊答案