7.若函數(shù)f(x)=log2x+x-k(k∈N)在區(qū)間(2,3)上只有一個零點,則k=( 。
A.0B.2C.4D.6

分析 由題意可得f(2)f(3)<0,解關于k的不等式可得.

解答 解:∵函數(shù)f(x)=log2x+x-k在區(qū)間(2,3)上單調遞增,
又∵函數(shù)f(x)=log2x+x-k(k∈N)在區(qū)間(2,3)上只有一個零點,
∴f(2)f(3)<0,即(3-k)(3+log23-k)<0,
解得3<k<3+log23,由k∈N可得k=4,
故選:C.

點評 本題考查函數(shù)零點的判定定理,涉及不等式的解法,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.某公司一年需分x批次購買某種貨物,其總運費為$\frac{{{x^2}-2x+201}}{x-1}$萬元,一年的總存儲費用為x萬元,要使一年的總運費與總存儲費用之和最小,則批次x等于( 。
A.10B.11C.40D.41

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知正項等比數(shù)列{an}滿足:a7=a6+2a5,若存在兩項am,an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,則$\frac{1}{m}$+$\frac{5}{n}$的最小值為( 。
A.$1+\frac{{\sqrt{5}}}{3}$B.$\frac{7}{4}$C.2D.$\frac{11}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)y=$\frac{ln(x+1)}{\sqrt{-{x}^{2}-3x+4}}$的定義域為(-1,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.不等式$\frac{3}{x+1}≥1$的解集是(-1,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在公比為q的等比數(shù)列{an}中,若5a4=1,a5=5,則q等于( 。
A.$\frac{1}{25}$B.$\frac{1}{5}$C.5D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且A,B,C成等差數(shù)列.命題p:“a,b,c成等比數(shù)列”;命題q:“△ABC是等邊三角形”.則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.將函數(shù)$f(x)=Asin(ωx+φ)(A>0,ω>0,-\frac{π}{2}<φ<\frac{π}{2})$圖象上每一點的橫坐標變?yōu)樵瓉淼?倍(縱坐標不變),然后把所得圖象上的所有點沿x軸向右平移$\frac{π}{3}$個單位,得到函數(shù)y=2sinx的圖象,則f(φ)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)為偶函數(shù),且當x<0時,f(x)=x-$\frac{1}{x}$,那么f(1)=( 。
A.0B.-2C.2D.1

查看答案和解析>>

同步練習冊答案