已知向量
a
=(-2,2),
b
=(5,k).
(1)若
a
b
,求k的值;
(2)若|
a
+
b
|不超過5,求k的取值范圍.
考點:數(shù)量積判斷兩個平面向量的垂直關(guān)系
專題:平面向量及應(yīng)用
分析:(1)由已知得
a
b
=-10+2k=0,從而求出k=5.
(2)由已知得
a
+
b
=(3,2+k),|
a
+
b
|=
9+(2+k)2
≤5,由此能求出k的取值范圍.
解答: 解:(1)∵向量
a
=(-2,2),
b
=(5,k),
a
b
,
a
b
=-10+2k=0,
解得k=5.
(2)∵向量
a
=(-2,2),
b
=(5,k),
a
+
b
=(3,2+k),
∵|
a
+
b
|不超過5,
∴|
a
+
b
|=
9+(2+k)2
≤5,解得-6≤k≤2,
∴k的取值范圍是[-6,2].
點評:本題考查實數(shù)值和取值范圍的求法,是基礎(chǔ)題,解題時要注意向量垂直的性質(zhì)和向量模的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某高中高一、高二、高三年級的學(xué)生人數(shù)之比是8:7:10,用分層抽樣的方法從三個年級抽取學(xué)生到劇院觀看演出,已知高一抽取的人數(shù)比高二抽取的人數(shù)多2人,則高三觀看演出的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(
π
2
+α)=
2
5
5
且tanα>0.
(Ⅰ)求tanα的值;
(Ⅱ)求
cos(2π-α)+2sin(α+π)
sin(
2
+α)-cos(α-
π
2
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,則
sin2α
cos2α
的值為( 。
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z1、z2在復(fù)平面內(nèi)的對應(yīng)點關(guān)于虛軸對稱,z1=2+i(i為虛數(shù)單位),則z1•z2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|0≤x≤2},B={x|x2-x>0},則A∩B=( 。
A、(-∞,1]U(2,+∞)
B、(-∞,0)∪(1,2)
C、[1,2)
D、(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2log23+2log24=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+φ)(ω>0)在區(qū)間(
π
4
,
π
2
)上是減函數(shù),且f(0)=f(
π
4
)=-f(
π
2
),則f(
π
12
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是( 。
A、y=x2
B、y=-
1
x
C、y=x3
D、y=log2x

查看答案和解析>>

同步練習(xí)冊答案