【題目】已知函數(shù).
(1)完成表一中對應的值,并在坐標系中用描點法作出函數(shù)的圖象:(表一)
0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 | |
0.08 | 1.82 | 2.58 |
(2)根據(jù)你所作圖象判斷函數(shù)的單調(diào)性,并用定義證明;
(3)說明方程的根在區(qū)間存在的理由,并從表二中求使方程的根的近似值達到精確度為0.01時運算次數(shù)的最小值并求此時方程的根的近似值,且說明理由.
(表二)二分法的結(jié)果
運算次數(shù)的值 | 左端點 | 右端點 | ||
-0.537 | 0.6 | 0.75 | 0.08 | |
-0.217 | 0.675 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.73125 | 0.011 | |
-0.03 | 0.721875 | 0.73125 | 0.011 | |
-0.01 | 0.7265625 | 0.73125 | 0.011 |
【答案】(1)見解析 (2)增函數(shù),證明見解析 (3),方程的根的近似值為,理由見解析
【解析】
(1)分別代入表中的數(shù)據(jù)進行求解再描點即可.
(2)由圖像直觀判斷即可.再設區(qū)間內(nèi),判斷的正負進行證明即可.
(3)根據(jù)零點存在性定理證明即可證明程的根在區(qū)間存在.再根據(jù)圖表判斷當根的近似值與的差的絕對值小于時的最小值即可.
解:(1)
0.5 | 0.75 | 1 | 1.25 | 1.5 | ||
0.08 | 1 | 1.82 | 2.58 |
(2)函數(shù)在定義域內(nèi)為增函數(shù),證明:設,則,,因為
即所以函數(shù)在定義域內(nèi)為增函數(shù).
(3)是圖象是一條連續(xù)不斷的曲線,
且,故方程的根在區(qū)間存在.
當時,所以當時方程的根的近似值達不到精確度為0.01,
當時,所以當時方程的根的近似值達到精確度為0.01,所以.
方程的根的近似值為.
科目:高中數(shù)學 來源: 題型:
【題目】某電影院共有1000個座位,票價不分等次,根據(jù)影院的經(jīng)營經(jīng)驗,當每張票價不超過10元時,票可全售出;當每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個合適的票價,需符合的基本條件是:①為了方便找零和算賬,票價定為1元的整數(shù)倍;②電影院放一場電影的成本費用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價,用y(元)表示該影院放映一場的凈收入(除去成本費用支出后的收入)
問:
(1)把y表示為x的函數(shù),并求其定義域;
(2)試問在符合基本條件的前提下,票價定為多少時,放映一場的凈收人最多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列滿足4Sn=an2+2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設bn= ,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點到點的距離,等于它到直線的距離.
(1)求點的軌跡的方程;
(2)過點任意作互相垂直的兩條直線,分別交曲線于點和.
設線段,的中點分別為,求證:直線恒過一個定點;
(3)在(2)的條件下,求面積的最小值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某漁業(yè)公司今年年初用98萬元購進一艘漁船用于捕撈,第一年需要各種費用12萬元.從第二年起包括維修費在內(nèi)每年所需費用比上一年增加4萬元.該船每年捕撈總收入50萬元.
(1)問捕撈幾年后總盈利最大,最大是多少?
(2)問捕撈幾年后的平均利潤最大,最大是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分,(Ⅰ)小問6分,(Ⅱ)小問6分)一家公司計劃生產(chǎn)某種小型產(chǎn)品的月固定成本為萬元,每生產(chǎn)萬件需要再投入萬元.設該公司一個月內(nèi)生產(chǎn)該小型產(chǎn)品萬件并全部銷售完,每萬件的銷售收入為萬元,且每萬件國家給予補助萬元. (為自然對數(shù)的底數(shù),是一個常數(shù).)
(Ⅰ)寫出月利潤(萬元)關于月產(chǎn)量(萬件)的函數(shù)解析式;
(Ⅱ)當月生產(chǎn)量在萬件時,求該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤最大值(萬元)及此時的月生產(chǎn)量值(萬件). (注:月利潤=月銷售收入+月國家補助-月總成本).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),為實數(shù).
(1)當時,求的最小值;
(2)若存在實數(shù),使得對任意實數(shù)都有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()且函數(shù)是奇函數(shù).
(1)求的值;
(2)是否存在這樣的實數(shù),使對所有的均成立?若存在,求出適合條件的實數(shù)的值或范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的函數(shù)滿足:對任何,都有,且當時,,在下列結(jié)論中,正確命題的序號是________
① 對任何,都有;② 函數(shù)的值域是;
③ 存在,使得;④ “函數(shù)在區(qū)間上單調(diào)遞減”的充要條
件是“存在,使得”;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com