【題目】(本小題滿分12分,(Ⅰ)小問6分,(Ⅱ)小問6分)一家公司計劃生產(chǎn)某種小型產(chǎn)品的月固定成本為萬元,每生產(chǎn)萬件需要再投入萬元.設(shè)該公司一個月內(nèi)生產(chǎn)該小型產(chǎn)品萬件并全部銷售完,每萬件的銷售收入為萬元,且每萬件國家給予補助萬元. (為自然對數(shù)的底數(shù),是一個常數(shù).)
(Ⅰ)寫出月利潤(萬元)關(guān)于月產(chǎn)量(萬件)的函數(shù)解析式;
(Ⅱ)當月生產(chǎn)量在萬件時,求該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤最大值(萬元)及此時的月生產(chǎn)量值(萬件). (注:月利潤=月銷售收入+月國家補助-月總成本).
【答案】(Ⅰ);
(Ⅱ)月生產(chǎn)量在萬件時,該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤最大值為,此時的月生產(chǎn)量值為(萬件)
【解析】
試題(Ⅰ)根據(jù)題設(shè)條件:月利潤=月銷售收入+月國家補助-月總成本,可得利潤(萬元)關(guān)于月產(chǎn)量(萬件)的函數(shù)解析式;
(Ⅱ)先求函數(shù)的導數(shù),再利用導數(shù)的符號判斷函數(shù)在的單調(diào)性并進一步據(jù)此求出其最大值及最大值點.
試題解析:解:(Ⅰ)由于:月利潤=月銷售收入+月國家補助-月總成本,可得
(Ⅱ)的定義域為,
且
列表如下:
+ | - | ||
增 | 極大值 | 減 |
由上表得:在定義域上的最大值為.
且.即:月生產(chǎn)量在萬件時,該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤最大值為,此時的月生產(chǎn)量值為(萬件).
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左頂點為,右焦點為,點在橢圓上.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,直線分別與軸交于點,在軸上,是否存在點,使得無論非零實數(shù)怎樣變化,總有為直角?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2016·雅安高一檢測)已知函數(shù)f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)-f(x+2),
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一次數(shù)學測驗中,全班名學生的數(shù)學成績的頻率分布直方圖如下,已知分數(shù)在的學生數(shù)有14人.
(1)求總?cè)藬?shù)和分數(shù)在的人數(shù);
(2)利用頻率分布直方圖,估算該班學生數(shù)學成績的眾數(shù)和中位數(shù),平均數(shù)各是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)完成表一中對應的值,并在坐標系中用描點法作出函數(shù)的圖象:(表一)
0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 | |
0.08 | 1.82 | 2.58 |
(2)根據(jù)你所作圖象判斷函數(shù)的單調(diào)性,并用定義證明;
(3)說明方程的根在區(qū)間存在的理由,并從表二中求使方程的根的近似值達到精確度為0.01時運算次數(shù)的最小值并求此時方程的根的近似值,且說明理由.
(表二)二分法的結(jié)果
運算次數(shù)的值 | 左端點 | 右端點 | ||
-0.537 | 0.6 | 0.75 | 0.08 | |
-0.217 | 0.675 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.73125 | 0.011 | |
-0.03 | 0.721875 | 0.73125 | 0.011 | |
-0.01 | 0.7265625 | 0.73125 | 0.011 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中,正確的有_______.
①回歸直線恒過點,且至少過一個樣本點;
②根據(jù)列列聯(lián)表中的數(shù)據(jù)計算得出,而,則有99%的把握認為兩個分類變量有關(guān)系;
③是用來判斷兩個分類變量是否相關(guān)的隨機變量,當的值很小時可以推斷兩個變量不相關(guān);
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在P地正西方向8km的A處和正東方向1km的B處各有一條正北方向的公路AC和BD,現(xiàn)計劃在AC和BD路邊各修建一個物流中心E和F,為緩解交通壓力,決定修建兩條互相垂直的公路PE和PF,設(shè)
Ⅰ為減少對周邊區(qū)域的影響,試確定E,F的位置,使與的面積之和最。
Ⅱ為節(jié)省建設(shè)成本,求使的值最小時AE和BF的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線M:的左、右頂點分別為A,B,設(shè)P是曲線M上的任意一點.
(1)當P異于A,B時,記直線PA、PB的斜率分別為、則是否為定值,請說明理由.
(2)已知點C在曲線M長軸上(異于A、B兩點),且的最大值為7,求點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com