【題目】一名大學生嘗試開家網(wǎng)店銷售一種學習用品,經(jīng)測算每售出1盒該產(chǎn)品可獲利30元,未售出的商品每盒虧損10元.根據(jù)統(tǒng)計資料,得到該商品的月需求量的頻率分布直方圖如圖所示,該同學為此購進180盒該產(chǎn)品,以x(單位:盒,100≤x≤200)表示一個月內(nèi)的市場需求量,y(單位:元)表示一個月內(nèi)經(jīng)銷該產(chǎn)品的利潤.

(1)根據(jù)直方圖估計這個月內(nèi)市場需求量x的平均數(shù);

(2)將y表示為x的函數(shù);

(3)根據(jù)直方圖估計這個月利潤不少于3 800元的概率(用頻率近似概率).

【答案】(1)153;(2);(3)0.7

【解析】試題分析:(1)根據(jù)直方圖能估計這個月內(nèi)市場需求量的平均數(shù);(2)由每售出1盒蓋產(chǎn)品獲利30元,未售出的商品每盒虧損10元,分,兩種情況進行分類討論,能將表示為的函數(shù);(3)由利潤不少于3800元,得到,由此能求出利潤不少于3800元的概率.

試題解析:(1)由頻率分布直方圖得:

需求量在[100,120)內(nèi)的頻率為0.005×20=0.1,

需求量在[120,140)內(nèi)的頻率為0.01×20=0.2,

需求量在[140,160)內(nèi)的頻率為0.015×20=0.3,

需求量在[160,180)內(nèi)的頻率為0.012 5×20=0.25,

需求量在[180,200]內(nèi)的頻率為0.007 5×20=0.15,

根據(jù)直方圖估計這個月內(nèi)市場需求量x的平均數(shù)為=110×0.1+130×0.2+150×0.3+170×0.25+190×0.15=153.

(2)∵每售出1盒該產(chǎn)品獲利30元,未售出的商品每盒虧損10元,

當100≤x<180時,y=30x-10(180-x)=40x-1 800;當180≤x≤200時,y=30×180=5 400.

y=

(3)∵利潤不少于3 800元

∴40x-1 800≥3 800

x≥140

由(1)知利潤不少于3 800元的概率為1-0.1-0.2=0.7.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓方程 為: 橢圓的右焦點為 ,離心率為 ,直線 與橢圓 相交于 兩點,且
(1)橢圓的方程
(2)求 的面積;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心在直線y=4x上,且與直線l:x+y﹣2=0相切于點P(1,1)
(Ⅰ)求圓的方程
(II)直線kx﹣y+3=0與該圓相交于A、B兩點,若點M在圓上,且有向量 (O為坐標原點),求實數(shù)k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求證: 函數(shù)是偶函數(shù);

(2)若對任意的,都有,求實數(shù)的取值范圍;

(3)若函數(shù)有且僅有個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;

(2)計算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】聯(lián)合國教科文組織規(guī)定,每年的4月23日是“世界讀書日”.某校研究生學習小組為了解本校學生的閱讀情況,隨機調(diào)查了本校400名學生在這一天的閱讀時間(單位:分鐘),將時間數(shù)據(jù)分成5組:,并整理得到如下頻率分布直方圖.

(1)求的值;

(2)試估計該學校所有學生在這一天的平均閱讀時間;

(3)若用分層抽樣的方法從這400名學生中抽取50人參加交流會,則在閱讀時間為的兩組中分別抽取多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:(x﹣1)2+(y﹣1)2=1上存在4個點到直線x+y﹣m=0(m∈R)的距離等于1﹣
(1)求m的取值范圍;
(2)判斷圓C與圓D:x2+y2﹣2mx=0的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l與圓C:x2+y2+2x﹣4y+a=0相交于A,B兩點,弦AB的中點為M(0,1).
(1)若圓C的半徑為 ,求實數(shù)a的值;
(2)若弦AB的長為6,求實數(shù)a的值;
(3)當a=1時,圓O:x2+y2=2與圓C交于M,N兩點,求弦MN的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合M={x|x<2},集合N={x|0<x<1},則下列關系中正確的是(
A.M∪N=R
B.M∪RN=R
C.N∪RM=R
D.M∩N=M

查看答案和解析>>

同步練習冊答案