A. | 974 | B. | $\frac{63}{2}$ | C. | 57 | D. | 33 |
分析 在(ax-$\frac{3}{4x}$+$\frac{2}{3}$)(x-$\frac{2}{x}$)6中令x=1得展開式中各項(xiàng)系數(shù)的和,求出a的值;再把(x-$\frac{2}{x}$)6展開,從而求出($\frac{193}{12}$x-$\frac{3}{4x}$+$\frac{2}{3}$)(x-$\frac{2}{x}$)6展開式中x3項(xiàng)的系數(shù).
解答 解:(ax-$\frac{3}{4x}$+$\frac{2}{3}$)(x-$\frac{2}{x}$)6中,
令x=1得展開式中各項(xiàng)系數(shù)的和為(a-$\frac{1}{12}$)•(1-2)6=16,
解得a=$\frac{193}{12}$;
∴($\frac{193}{12}$x-$\frac{3}{4x}$+$\frac{2}{3}$)(x-$\frac{2}{x}$)6,
又(x-$\frac{2}{x}$)6的展開式通項(xiàng)公式為
Tr+1=${C}_{6}^{r}$•x6-r•${(-\frac{2}{x})}^{r}$=(-2)r•${C}_{6}^{r}$•x6-2r,
6-2r=2,解得r=2,
∴(x-$\frac{2}{x}$)6的展開式中含x2的系數(shù)為(-2)2•${C}_{6}^{2}$=60;
令6-2r=4,解得r=1,
∴(x-$\frac{2}{x}$)6的展開式中含x4的系數(shù)為-2•${C}_{6}^{1}$=-12;
令6-2r=3,解得r=$\frac{3}{2}$,不合題意,舍去;
∴($\frac{193}{12}$x-$\frac{3}{4x}$+$\frac{2}{3}$)(x-$\frac{2}{x}$)6展開式中x3項(xiàng)的系數(shù)為
$\frac{193}{12}$•60-$\frac{3}{4}$•(-12)=974.
故選:A.
點(diǎn)評(píng) 本題考查了二項(xiàng)式展開式的通項(xiàng)公式應(yīng)用問題,是綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{12}{13}$ | B. | $-\frac{12}{13}$ | C. | $-\frac{5}{13}$ | D. | $\frac{5}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com