【題目】某校為了紀念“中國紅軍長征90周年”,增強學生對“長征精神”的深刻理解,在全校組織了一次有關“長征”的知識競賽,經(jīng)過初賽、復賽,甲、乙兩個代表隊(每隊3人)進入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得20分,答錯得0分.假設甲隊中每人答對的概率均為,乙隊中3人答對的概率分別為, , ,且各人回答正確與否相互之間沒有影響,用表示乙隊的總得分.

(1)求的分布列和均值;

(2)求甲、乙兩隊總得分之和等于40分且甲隊獲勝的概率.

【答案】(1) 的分布列為:

0

20

40

60

.

;(2) .

【解析】試題分析:(1)明確的所有可能取值,并確定相應的概率,從而得到分布列及期望;(2記“甲隊得40分,乙隊得0分”為事件,則。

試題解析:

(1)由題意知, 的所有可能取值為0,20,40,60.

,

,

,

.

的分布列為:

0

20

40

60

所以.

(2)記“甲隊得40分,乙隊得0分”為事件.

,

故甲、乙兩隊總得分之和為40分且甲隊獲勝的概率為: .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)處取得極值,求實數(shù)的值;

(2)若函數(shù))在區(qū)間上為增函數(shù),求實數(shù)的取值范圍;

(3)若當時,方程有實數(shù)根,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求函數(shù)處的切線方程;

(2)若函數(shù)在定義域上具有單調(diào)性,求實數(shù)的取值范圍;

(3)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為評估新教改對教學的影響,挑選了水平相當?shù)膬蓚平行班進行對比試驗,甲班采用創(chuàng)新教法,乙班仍采用傳統(tǒng)教法,一段時間后進行水平測試,成績結(jié)果全部落在區(qū)間內(nèi)(滿分100分),并繪制頻率分布直方圖如圖所示,兩個班人數(shù)均為60人,成績80分及以上為優(yōu)良.

(1)根據(jù)以上信息填好聯(lián)表,并判斷出有多大的把握認為學生成績優(yōu)良與班級有關?

(2)以班級分層抽樣,抽取成績優(yōu)良的5人參加座談,現(xiàn)從5人中隨機選3人來作書面發(fā)言,求發(fā)言人至少有2人來自甲班的概率.

(以下臨界值及公式僅供參考)

, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某直三棱柱(側(cè)棱與底面垂直的三棱柱)被削去上底后的直觀圖與三視圖中的側(cè)視圖、俯視圖,在直觀圖中, 的中點,側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關數(shù)據(jù)如圖所示.

(1)求出該幾何體的體積;

(2)若的中點,求證: 平面;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一次猜獎游戲中,1,2,3,4四扇門里擺放了, , 四件獎品(每扇門里僅放一件).甲同學說:1號門里是,3號門里是;乙同學說:2號門里是,3號門里是;丙同學說:4號門里是,2號門里是;丁同學說:4號門里是,3號門里是.如果他們每人都猜對了一半,那么4號門里是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程是為參數(shù)).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)設點,若直線與曲線交于 兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為: (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求直角坐標系下曲線與曲線的方程;

(2)設為曲線上的動點,求點上點的距離的最大值,并求此時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知圓的參數(shù)方程為為參數(shù)),若是圓軸正半軸的交點,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,設過點的圓的切線為.

(1)求直線的極坐標方程;

(2)求圓上到直線的距離最大的點的直角坐標.

查看答案和解析>>

同步練習冊答案