【題目】有一塊半徑為,圓心角為的扇形鋼板,需要將它截成一塊矩形鋼板,分別按圖1和圖2兩種方案截。ㄆ渲蟹桨付械木匦侮P(guān)于扇形的對(duì)稱(chēng)軸對(duì)稱(chēng)).

1:方案一 2:方案二

(1)求按照方案一截得的矩形鋼板面積的最大值;

(2)若方案二中截得的矩形為正方形,求此正方形的面積;

(3)若要使截得的鋼板面積盡可能大,應(yīng)選擇方案一還是方案二?請(qǐng)說(shuō)明理由,并求矩形鋼板面積的最大值.

【答案】12523)方案二,最大值為,理由見(jiàn)解析

【解析】

1)連接,設(shè),,,則矩形面積為關(guān)于的函數(shù),求出最值即可;

2)連接,設(shè),利用正弦定理和三角形的對(duì)稱(chēng)性質(zhì)可得,利用解得,進(jìn)而求出正方形面積即可;

3)由(2)得到,求出最大值,與(1)的最值比較即可

解:(1)連接,設(shè),,

,,

,

,

當(dāng),時(shí),

2)連接,設(shè),

正方形關(guān)于扇形軸對(duì)稱(chēng),

,

,

,由正弦定理可得,,

,

正方形,

,,,

代入可得,

3)選擇方案二,

由(2,對(duì)于方案二

,

當(dāng),時(shí),

由(1,

應(yīng)選擇方案二

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商家對(duì)他所經(jīng)銷(xiāo)的一種商品的日銷(xiāo)售量(單位:噸)進(jìn)行統(tǒng)計(jì),最近50天的統(tǒng)計(jì)結(jié)果

如下表:

日銷(xiāo)售量

1

1.5

2

天數(shù)

10

25

15

頻率

0.2

若以上表中頻率作為概率,且每天的銷(xiāo)售量相互獨(dú)立.

(1)求5天中該種商品恰好有兩天的銷(xiāo)售量為1.5噸的概率;

(2)已知每噸該商品的銷(xiāo)售利潤(rùn)為2千元,表示該種商品某兩天銷(xiāo)售利潤(rùn)的和(單位:千元),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一條曲線(xiàn)Cy軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y軸距離的差都是1

1)求曲線(xiàn)C的方程.

2)是否存在正數(shù)m,對(duì)于過(guò)點(diǎn)M(m,0)且與曲線(xiàn)C有兩個(gè)交點(diǎn)A,B的任一直線(xiàn),都有?若存在,求出m的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)C的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為

(1)求曲線(xiàn)C的參數(shù)方程和直線(xiàn)的直角坐標(biāo)方程;

(2)若直線(xiàn)軸和y軸分別交于AB兩點(diǎn),P為曲線(xiàn)C上的動(dòng)點(diǎn),求PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:的長(zhǎng)軸長(zhǎng)為4,左、右頂點(diǎn)分別為,經(jīng)過(guò)點(diǎn)的動(dòng)直線(xiàn)與橢圓相交于不同的兩點(diǎn)(不與點(diǎn)重合).

(1)求橢圓的方程及離心率;

(2)求四邊形面積的最大值;

(3)若直線(xiàn)與直線(xiàn)相交于點(diǎn),判斷點(diǎn)是否位于一條定直線(xiàn)上?若是,寫(xiě)出該直線(xiàn)的方程. (結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程的曲線(xiàn)是圓

1)求實(shí)數(shù)的取值范圍;

2)若直線(xiàn)與圓相交于、兩點(diǎn),且為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的值;

3)當(dāng)時(shí),設(shè)為直線(xiàn)上的動(dòng)點(diǎn),過(guò)作圓的兩條切線(xiàn)、,切點(diǎn)分別為,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCDABCD,平面垂直于對(duì)角線(xiàn)AC,且平面截得正方體的六個(gè)表面得到截面六邊形,記此截面六邊形的面積為S,周長(zhǎng)為l,則(

A. S為定值,l不為定值 B. S不為定值,l為定值

C. Sl均為定值 D. Sl均不為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)C和橢圓1有公共的焦點(diǎn),且離心率為

1)求雙曲線(xiàn)C的方程;

2)經(jīng)過(guò)點(diǎn)M2,1)作直線(xiàn)l交雙曲線(xiàn)CA、B兩點(diǎn),且MAB的中點(diǎn),求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)C=2px經(jīng)過(guò)點(diǎn)(1,2).過(guò)點(diǎn)Q(0,1)的直線(xiàn)l與拋物線(xiàn)C有兩個(gè)不同的交點(diǎn)AB,且直線(xiàn)PAy軸于M,直線(xiàn)PBy軸于N

求直線(xiàn)l的斜率的取值范圍

設(shè)O為原點(diǎn),,求證為定值

查看答案和解析>>

同步練習(xí)冊(cè)答案