8.${∫}_{0}^{2}$(1-2x2)dx的值等于( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.-$\frac{4}{3}$D.-$\frac{10}{3}$

分析 直接利用定積分運(yùn)算法則求解即可.

解答 解:${∫}_{0}^{2}$(1-2x2)dx=(x-$\frac{2}{3}$x3)${|}_{0}^{2}$=2-$\frac{2}{3}×8$=-$\frac{10}{3}$.
故選:D.

點(diǎn)評 本題考查定積分的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,AB是圓O的直徑,CD⊥AB于D,且AD=2BD,E為AD的中點(diǎn),連接CE并延長交圓O于F.若CD=$\sqrt{2}$,則求線段AB與EF的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若f(x)=$\frac{x}{(x+1)(x-a)}$為奇函數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知鈍角△ABC的三邊a=t-1,b=t+1,c=t+3,求t的取值范圍(3,7).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,已知∠BOC在平面α內(nèi),OA是平面α的斜線,且∠AOB=∠AOC=60°,OA=OB=OC=a,BC=$\sqrt{2}$a,求OA和平面α所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在數(shù)列{an}中,a1=a(a≠0,a≠1),數(shù)列{an}的前n項和Sn,且Sn=$\frac{a}{1-a}$(1-an),
(1)求證:{an}是等比數(shù)列;
(2)記bn=anlg|an|(n∈N*),當(dāng)a=-$\frac{{\sqrt{7}}}{3}$時,是否存在正整數(shù)m,使得對于任意正整數(shù)n,都有bn≥bm?如果存在,求出m的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2+2x
(1)若x∈[-2,a],a>-2時,求f(x)的值域;
(2)若存在實(shí)數(shù)t,當(dāng)x∈[1,m],m>1時,f(x+t)≤3x恒成立,求實(shí)數(shù)m的取值范圍.
(提示:當(dāng)x∈[a,b]時f(x)≤k恒成立,則f(x)max≤k;存在x∈[a,b]使得f(x)≤k,則f(x)min≤k)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)以π為周期,且區(qū)間在(0,$\frac{π}{2}$)上單調(diào)遞增的是(  )
A.y=2sinxB.y=|cosx|C.y=sin(2x-$\frac{π}{2}$)D.y=tan2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.以下命題(其中a,b表示直線,a表示平面):
①a∥b,b?α,則a∥α;②若a∥α,b?α,則a∥b;
③若a∥b,b∥α,則a∥α;其中正確命題的個數(shù)是( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

同步練習(xí)冊答案