4.如圖所示,在△ABC中,D為BC邊上的一點,且BD=2DC,若$\overrightarrow{AC}$=m$\overrightarrow{AB}$+n$\overrightarrow{AD}$(m,n∈R),則$\frac{n}{m}$=-3.

分析 根據(jù)向量減法的幾何意義,以及向量的數(shù)乘運算便可由$\overrightarrow{BD}=2\overrightarrow{DC}$得到$\overrightarrow{AC}=-\frac{1}{2}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AD}$,這便可得到m=$-\frac{1}{2},n=\frac{3}{2}$,從而可以求出$\frac{n}{m}$.

解答 解:BD=2DC;
∴$\overrightarrow{BD}=2\overrightarrow{DC}$;
∴$\overrightarrow{AD}-\overrightarrow{AB}=2(\overrightarrow{AC}-\overrightarrow{AD})$;
∴$\overrightarrow{AC}=-\frac{1}{2}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AD}$;
又$\overrightarrow{AC}=m\overrightarrow{AB}+n\overrightarrow{AD}$;
∴$m=-\frac{1}{2},n=\frac{3}{2}$;
∴$\frac{n}{m}=-3$.
故答案為:-3.

點評 考查向量數(shù)乘、減法的幾何意義,以及向量的數(shù)乘運算,平面向量基本定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.$\overrightarrow{z}$是復(fù)數(shù)z的共軛復(fù)數(shù),若復(fù)數(shù)z滿足$\frac{i}{\overline{z}}$=1+i,則z=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)f(x)在[a,b]上的值域為[$\frac{a}{2}$,$\frac{2}$],則稱函數(shù)f(x)為“和諧函數(shù)”.下列函數(shù)中:①g(x)=$\sqrt{x-1}$+$\frac{1}{4}$;②p(x)=$\frac{1}{x}$;③q(x)=lnx;④h(x)=x2.“和諧函數(shù)”的個數(shù)為( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.對于問題:“已知關(guān)于x的不等式ax2+bx+c>0的解集為(-1,2),解關(guān)于x的不等式ax2-bx+c>0”,給出如下一種解法:
解:由ax2+bx+c>0的解集為(-1,2),得a(-x)2+b(-x)+c>0的解集為(-2,1),
即關(guān)于x的不等式ax2-bx+c>0的解集為(-2,1).
參考上述解法,若關(guān)于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集為(-3,-1)∪(1,2),則關(guān)于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集為(-1,-$\frac{1}{3}$)∪($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知關(guān)于x的不等式|2x-1|-|x-1|≤a.
(Ⅰ)當(dāng)a=3時,求不等式的解集;
(Ⅱ)若不等式有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示,則該函數(shù)的解析式可能是(  )
A.f(x)=$\frac{3}{4}$sin($\frac{3}{2}$x+$\frac{π}{6}$)B.f(x)=$\frac{4}{5}$sin($\frac{4}{5}$x+$\frac{1}{5}$)C.f(x)=$\frac{4}{5}$sin($\frac{5}{6}$x+$\frac{π}{6}$)D.f(x)=$\frac{4}{5}$sin($\frac{2}{3}$x-$\frac{1}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,asinA=bsinB+(c-b)sinC,且bc=4,則△ABC的面積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.一個長方體高為5,底面長方形對角線長為12,則它外接球的表面積為169π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)f(x)=asin(πx+α)+bcos(πx+β)+7,α,β,a,b均為實數(shù),若f(2001)=6,求f(2008)的值.

查看答案和解析>>

同步練習(xí)冊答案