8.已知α為第三象限角,sinα=-$\frac{3}{5}$,則sin2α=$\frac{24}{25}$,cos2α=$\frac{7}{25}$.

分析 由題意利用同角三角函數(shù)的基本關(guān)系求得cosα,再利用二倍角公式即可求得sin2α和cos2α.

解答 解:∵α為第三象限角,sinα=-$\frac{3}{5}$,
∴cosα=-$\frac{4}{5}$,
∴sin2α=2sinαcosα=2×$(-\frac{3}{5})×(-\frac{4}{5})$=$\frac{24}{25}$,
cos2α=2cos2α-1=2×(-$\frac{4}{5}$)2-1=$\frac{7}{25}$.
故答案為:$\frac{24}{25}$,$\frac{7}{25}$.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系、二倍角公式的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.推理“①矩形是平行四邊形;②三角形不是平行四邊形;③所以三角形不是矩形.”中的大前提是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\frac{{lnx+{{({x-b})}^2}}}{x}$(b∈R).若存在x∈[$\frac{1}{2},3}$],使得f(x)>-x•f'(x),則實(shí)數(shù)b的取值范圍是( 。
A.$({-∞,\frac{19}{6}})$B.$({-∞,\frac{3}{2}})$C.$({-∞,\frac{9}{4}})$D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為了讓學(xué)生了解更多“奧運(yùn)會”知識,某中學(xué)舉行了一次“奧運(yùn)知識競賽”,共有800名學(xué)生參加了這次競賽,為了解本次競賽成績情況,從中抽取部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計.請你根據(jù)尚未完成的頻率分布表,解答下列問題:
分組頻數(shù)頻率
60~70a0.16
70~8010
80~90180.36
90~100b
合計50
(1)若用系統(tǒng)抽樣的方法抽取50個樣本,現(xiàn)將所有學(xué)生隨機(jī)地編號為000,001,002,…,799,試寫出第二組第一位學(xué)生的編號;
(2)求頻率分布表格中a,b的值,并估計800學(xué)生的平均成績;
(3)若成績在85~95分的學(xué)生為二等獎,問參賽學(xué)生中獲得二等獎的學(xué)生約為多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知xy>0,若$\frac{x}{y}$+$\frac{4y}{x}$>m2+3m恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.m≥-1或m≤-4B.m≥4或m≤-1C.-4<m<1D.-1<m<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知平面直角坐標(biāo)系上一動點(diǎn)P(x,y)到點(diǎn)A(-2,0)的距離是點(diǎn)P到點(diǎn)B(1,0)的距離的2倍.
(1)求點(diǎn)P的軌跡方程;
(2)已知點(diǎn)Q(2,0),過點(diǎn)A的直線l與點(diǎn)P的軌跡C相交于E,F(xiàn)兩點(diǎn),當(dāng)△QEF的面積最大時,求直線l的方程;
(3)過直線l′:3x+4y+14=0上一點(diǎn)R引點(diǎn)P的軌跡C的兩條切線,切點(diǎn)分別為M,N,當(dāng)線段MN的長度最小時,求MN所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.把長為16cm的鐵絲分成兩段,各圍成一個正方形,則這兩個正方形面積和的最小值為(  )
A.2cm2B.4cm2C.6cm2D.8cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知直線(a-2)x+ay-1=0與直線2x+3y+5=0垂直,則a的值為( 。
A.-6B.6C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,AB是圓O的直徑,點(diǎn)C在圓O上,延長BC到D使BC=CD,過C作圓O的切線交AD于E.若AB=6,ED=2.
(1)求證:CE⊥AD;
(2)求BC的長.

查看答案和解析>>

同步練習(xí)冊答案