17.已知直線(a-2)x+ay-1=0與直線2x+3y+5=0垂直,則a的值為(  )
A.-6B.6C.-$\frac{4}{5}$D.$\frac{4}{5}$

分析 利用兩條直線相互垂直與斜率的關(guān)系即可得出.

解答 解:∵直線(a-2x)+ay-1≠0與直線2x+3y+5=0垂直,則此兩條直線的斜率都存在.
∴$-\frac{a-2}{a}$×$(-\frac{2}{3})$=-1,
解得a=$\frac{4}{5}$.
故選:D.

點評 本題考查了兩條直線相互垂直與斜率的關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=$\sqrt{{x^2}+2x-3}+ln\frac{1}{x+3}$的定義域是(  )
A.RB.(-∞,-3]∪[1,+∞)C.(-3,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知α為第三象限角,sinα=-$\frac{3}{5}$,則sin2α=$\frac{24}{25}$,cos2α=$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,若$\frac{sinA}{cosB•sinC}$=2,則△ABC的形狀是( 。
A.直角三角形B.等邊三角形C.等腰三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知x>0,y>0,且$\frac{4}{x}$+$\frac{3}{y}$=1.
(Ⅰ)求xy的最小值,并求出取得最小值時x,y的值;
(Ⅱ)求x+y的最小值,并求出取得最小值時x,y的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義在R上的奇函數(shù)f(x),其導(dǎo)函數(shù)為f′(x);當(dāng)x∈(0,+∞)時,都有2f(x)+xf′(x)<$\frac{1}{x}$,則不等式x2f(x)-2f($\sqrt{2}$)<x-$\sqrt{2}$的解集為( 。
A.($\sqrt{2}$,+∞)B.(-∞,$\sqrt{2}$)C.(-$\sqrt{2}$,$\sqrt{2}$)D.(0,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.分數(shù)指數(shù)冪表示下列各式
(1)$\sqrt{a}$(a>0);
(2)$\root{3}{{x}^{2}}$;
(3)$\frac{1}{\root{3}{a}}$;
(4)$\sqrt{{x}^{3}}$(x>0);
(5)$\sqrt{{x}^{4}{y}^{3}}$(y>0);
(6)$\frac{{m}^{2}}{\sqrt{m}}$(m>0);
(7)$\root{3}{(a+b)^{2}}$;
(8)$\sqrt{(m-n)^{2}}$(m>n)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖是一個簡單組合體的三視圖,想象它表示的組合體的結(jié)構(gòu)特征,并嘗試畫出它的示意圖(尺寸不作嚴格要求)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在多面體ABCDEFG中,四邊形ABCD與CDEF均為正方形,CF⊥平面ABCD,BG⊥平面ABCD,且AB=2BG=4BH.
(1)求證:平面AGH⊥平面EFG;
(2)求二面角D-FG-E的大小的余弦值.

查看答案和解析>>

同步練習(xí)冊答案