16.若實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x+y≤4}\\{y-x≤2}\\{x≥1}\\{y≥0}\end{array}\right.$,則$\frac{x+y}{x-1}$的最小值為( 。
A.2B.4C.$\frac{4}{3}$D.$\frac{4}{5}$

分析 做出不等式表示的平面區(qū)域,將 $\frac{x+y}{x-1}$化成1+$\frac{y+1}{x-1}$,即求過(guò)點(diǎn)(1,-1)的直線(xiàn)斜率的最小值問(wèn)題.

解答 解:做出平面區(qū)域如圖:
,
∵$\frac{x+y}{x-1}$=1+$\frac{y+1}{x-1}$,
根據(jù)$\frac{y+1}{x-1}$的幾何意義,
結(jié)合圖象可知當(dāng)過(guò)點(diǎn)(1,-1)的直線(xiàn)經(jīng)過(guò)點(diǎn)C(4,0)時(shí),斜率最小為$\frac{1}{3}$,
∴$\frac{y+1}{x-1}$的最小值為1+$\frac{1}{3}$=$\frac{4}{3}$.
故選:C.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線(xiàn)性規(guī)劃,考查數(shù)形結(jié)合,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.對(duì)于定義域?yàn)镈的函數(shù)f(x),如果滿(mǎn)足存在區(qū)間[a,b]⊆D使得f(x)在區(qū)間[a,b]上的值域?yàn)閇ka,kb](k∈N*),那么函數(shù)f(x)叫做[a,b]上的“k級(jí)矩形”函數(shù).
(1)設(shè)函數(shù)f(x)=x3(x∈R)是[a,b]上的“1級(jí)矩形”函數(shù),求常數(shù)a,b的值;
(2)證明:函數(shù)g(x)=$\frac{1}{x+2}$(x>-2)不是“k級(jí)矩形”函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知A(1,-1),B(x,y),且實(shí)數(shù)x,y滿(mǎn)足不等式組:$\left\{\begin{array}{l}{2x-y+2≥0}\\{x+y≥2}\\{x≤2}\end{array}\right.$,則z=$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值為(  )
A.2B.-2C.-4D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(-4,y),且$\overrightarrow{OA}⊥\overrightarrow{OB}$,則|$\overrightarrow{AB}$|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,G為三角形的重心,滿(mǎn)足$\sqrt{3}$(a$\overrightarrow{GA}$+b$\overrightarrow{GB}$)+c$\overrightarrow{GC}$=$\overrightarrow{0}$,則角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.實(shí)數(shù)a,b滿(mǎn)足:(2a)ln2=(3b)ln3和3lna=2lnb,則a=$\frac{1}{2}$,b=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.(1+x)(2+x)(3+x)…(20+x)的展開(kāi)式中x19的系數(shù)是210.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)函數(shù)f(x)=2${\;}^{\sqrt{|x|+1}}$-$\frac{3}{1+{x}^{2}}$,則使得f(x2+$\frac{2}{3}$x+2)>f(-x2+x-1)成立的x的取值范圍是( 。
A.[-$\frac{3}{5}$,+∞)B.(-∞,$\frac{3}{5}$]C.(-$\frac{3}{5}$,+∞)D.$({-\frac{3}{5},\frac{3}{5}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.實(shí)數(shù)m取何值時(shí),復(fù)數(shù)z=m2-1+(m2-3m+2)i
(1)是實(shí)數(shù);
(2)是純虛數(shù);
(3)復(fù)數(shù)z在復(fù)平面內(nèi)表示的點(diǎn)在第二象限.

查看答案和解析>>

同步練習(xí)冊(cè)答案