若θ是第三象限角,且cos
θ
2
<0,則
θ
2
所在的象限是
 
考點:三角函數(shù)值的符號,象限角、軸線角
專題:計算題
分析:由θ是第3象限角,知
θ
2
在第二象限或在第四象限,再由cos
θ
2
<0,由此能判斷出
θ
2
角所在象限.
解答: 解:∵θ是第3象限角,
∴180°+k•360°<θ<270°+k•360°,k∈Z,
∴90°+k•180°<
θ
2
<135°+k•180°,k∈Z,
θ
2
在第2象限或在第4象限,
∵cos
θ
2
<0,
θ
2
角在第2象限.
故答案為:二.
點評:本題考查角所在象限的判斷,是基礎題,比較簡單.解題時要認真審題,注意熟練掌握基礎的知識點.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)滿足2f(x)+f(
1
x
)=3x-1,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三角形三內角的比是7:8:15,則最小內角的弧度數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
(sinx+cosx)-
1
2
|sinx-cosx|,x∈[0,2π],則f(x)的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x-a)•|x|的圖象與直線y=1有且只有一個交點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三邊長分別為AB=5,BC=4,AC=3,M 是AB邊上的點,P是平面ABC外一點.給出下列四個命題:
①若PM丄平面ABC,且M是AB邊中點,則有PA=PB=PC;
②若PC=5,PC丄平面ABC,則△PCM面積的最小值為
15
2
;
③若PB=5,PB⊥平面ABC,則三棱錐P-ABC的外接球體積為
125
2
6
π;
④若PC=5,P在平面ABC上的射影是△ABC內切圓的圓心,則三棱錐P-ABC的體積為2
23
;
⑤若PA=5,PA⊥平面ABC,則直線MP與平面PBC所成的最大角正切值為
5
3

其中正確命題的序號是
 
. (把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某校在一次考試中,5名學生的數(shù)學和地理成績如表:
學生的編號i12345
數(shù)學成績x8075706560
地理成績y7066686462
(1)根據(jù)上表,利用最小二乘法,求出y關于x的線性回歸方程
y
=
b
x+
a
(其中
b
=0.36);
(2)利用(1)中的線性回歸方程,試估計數(shù)學90分的同學的地理成績(四舍五入到整數(shù));
(3)若從五人中選2人參加數(shù)學競賽,其中1、2號不同時參加的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠BAC=90°,AB=2,AC=6,點D在線段BB1上,且BD=
1
3
BB1
,A1C∩AC1=E.
(Ⅰ)求證:直線DE與平面ABC不平行;
(Ⅱ)設平面ADC1與平面ABC所成的銳二面角為θ,若cosθ=
7
7
,求AA1的長;
(Ⅲ)在(Ⅱ)的條件下,設平面ADC1∩平面ABC=l,求直線l與DE所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一海豚在水池的水面上自由游弋(深度忽略不計),水池為長30m,寬20m的長方體.求此刻海豚嘴尖離岸邊不超過2m的概率.

查看答案和解析>>

同步練習冊答案