1.已知a>1,b>1,且ab+2=2(a+b),則ab的最小值為6+4$\sqrt{2}$.

分析 利用基本不等式的性質(zhì)即可得出.

解答 解:a>1,b>1,且ab+2=2(a+b)≥4$\sqrt{ab}$
∴ab-4$\sqrt{ab}$+2≥0,當且僅當a=b=2+$\sqrt{2}$時取等號
設(shè)$\sqrt{ab}$=t>1,
∴t2-4t+2≥0,
解得t≥2+$\sqrt{2}$,
∴ab≥(2+$\sqrt{2}$)2=6+4$\sqrt{2}$,
∴ab的最小值為6+4$\sqrt{2}$,
故答案為:6+4$\sqrt{2}$.

點評 本題考查基本不等式的運用,一正二定三等,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)已知f(${\frac{2}{x}$+2)=x+1,求f(x);
(2)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖所示,四邊形EFGH為空間四邊形ABCD的一個截面,若截面為平行四邊形.
(1)求證:AB∥平面EFGH,CD∥平面EFGH;
(2)若AB=4,CD=6,求四邊形EFGH周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題中,真命題是( 。
A.?x∈R,2x>x2B.若a>b,c>d,則 a-c>b-d
C.?x∈R,ex<0D.ac2<bc2是a<b的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{-{2}^{x}+1}{{2}^{x+1}+2}$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷并證明f(x)的單調(diào)性;
(3)求關(guān)于x的不等式f(2x-1)+f(x+3)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x+$\frac{m}{x}$,且f(1)=2.
(Ⅰ)求m的值;
(Ⅱ)判斷f(x)的奇偶性;
(Ⅲ)用定義法證明f(x)在區(qū)間(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義在(-2,2)上的函數(shù)f(x)=-5x+x5,如果f(1+2a2)+f(a-2)>0,則實數(shù)a的取值范圍為(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.(0,$\frac{1}{2}$)C.(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)D.($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓C:(x-1)2+y2=$\frac{11}{2}$內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B兩點.
(1)當l經(jīng)過圓心C時,求直線l的方程;
(2)當直線l的斜率k=1時,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下面4個散點圖中,不適合用線性回歸模型擬合的兩個變量是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案