4.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若a2+b2=c2+$\sqrt{2}$ab,則C=( 。
A.60°B.120°C.45°D.135°

分析 由題意可得a2+b2-c2=$\sqrt{2}$ab,整體代入余弦定理可得cosC,由三角形內(nèi)角的范圍可得C值.

解答 解:在△ABC中,∵a2+b2=c2+$\sqrt{2}$ab,
∴a2+b2-c2=$\sqrt{2}$ab,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{\sqrt{2}ab}{2ab}$=$\frac{\sqrt{2}}{2}$,
又∵0°<C<180°,∴C=45°,
故選:C.

點(diǎn)評(píng) 本題考查余弦定理,整體代入是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow a$,$\overrightarrow b$滿足:|$\overrightarrow a$|=1,|$\overrightarrow b$|=6,$\overrightarrow a$•($\overrightarrow b$-$\overrightarrow{a}$)=2
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角
(2)求|2$\overrightarrow a$-$\overrightarrow b$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=10,an+1=9Sn+10.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn是數(shù)列{$\frac{1}{lg{a}_{n}•lg{a}_{n+1}}$}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2.
(1)若$\overrightarrow{a}$、$\overrightarrow$的夾角為45°,求|$\overrightarrow{a}$+$\overrightarrow$|
(2)若($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,求$\overrightarrow{a}$與$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{logabn}(a>0且a≠1)是首項(xiàng)為2,公差為1的等差數(shù)列,若數(shù)列{an}是遞增數(shù)列,且滿足an=bnlgbn,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{2}{3}$,1)B.(2,+∞)C.($\frac{2}{3}$,1)∪(1,+∞)D.(0,$\frac{2}{3}$)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給定命題:p:x<3,q:$\frac{3-x}{x-2}$>0,則p是q的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.一組數(shù)據(jù)x1,x2,…,x5的平均數(shù)為5,x${\;}_{1}^{2}$,x${\;}_{2}^{2}$,…,x${\;}_{5}^{2}$的平均數(shù)為33,則數(shù)據(jù)x1,x2,…,x5的方差為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足a1=1,a${\;}_{n+1}^{2}$-${a}_{n}^{2}$=2(n∈N*).
(1)若數(shù)列{an}中的每一項(xiàng)均為正數(shù),求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=$\frac{{a}_{n}^{2}}{{2}^{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{3}$)兩條相鄰的對(duì)稱軸之間的距離為$\frac{π}{2}$,若其圖象向右平移$\frac{π}{3}$個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)( 。
A.關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱B.關(guān)于點(diǎn)($\frac{5π}{12}$,0)對(duì)稱
C.關(guān)于直線x=$\frac{5π}{12}$對(duì)稱D.關(guān)于直線x=$\frac{π}{12}$對(duì)稱

查看答案和解析>>

同步練習(xí)冊(cè)答案