A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 ①由正弦定理進(jìn)行判斷,
②由正弦定理,可得,a=2rsinA,b=2rsinB,c=2rsinC,再由誘導(dǎo)公式和兩角和的正弦公式,即可證得,
③通過正弦定理與合分比定理即可判斷它的正誤.
④利用單位向量的定義及向量的數(shù)量積為0兩向量垂直,得到等腰三角形;利用向量的數(shù)量積求出三角形的夾角,得到非等邊三角形.
解答 解:①A>B>C,則a>b>c,由正弦定理得則sinA>sinB>sinC;故①正確,
②由正弦定理,$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$=2r,(r為△ABC的外接圓的半徑),
則a=2rsinA,b=2rsinB,c=2rsinC,
c=2rsinC=2rsin(A+B)=2r(sinAcosB+cosAsinB)
=2rsinAcosB+2rsinBcosA=acosB+bcosA;故②正確,
③由正弦定理以及合分比定理可知$\frac{a}{sinA}=\frac{b+c}{sinB+sinC}$,正確,
④:$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$,$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$分別是$\overrightarrow{AB}$、$\overrightarrow{AC}$方向的單位向量,
向量$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$在∠BAC的平分線上,
由($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)•$\overrightarrow{BC}$=0知,AB=AC,
由且$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$•$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$=$\frac{1}{2}$,可得∠CAB=120°,
∴△ABC為等腰非等邊三角形,故④不正確,
故選:C
點(diǎn)評(píng) 本題主要考查了正弦定理的運(yùn)用,解三角形問題,三角函數(shù)基本性質(zhì).單位向量的定義;向量垂直的充要條件;向量數(shù)量積的應(yīng)用,考查了推理和歸納的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0<x<2} | B. | {x|-1<x<3} | C. | {x|-1<x<0} | D. | {x|2<x<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{-\frac{3}{4},0}]$ | B. | $[{0,\frac{3}{4}}]$ | C. | $({-\frac{3}{4},0})$ | D. | $({0,\frac{3}{4}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com