【題目】在直角坐標(biāo)系xOy中,設(shè)圓的方程為(x+2 2+y2=48,F(xiàn)1是圓心,F(xiàn)2(2 ,0)是圓內(nèi)一點(diǎn),E為圓周上任一點(diǎn),線EF2的垂直平分線EF1的連線交于P點(diǎn),設(shè)動(dòng)點(diǎn)P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)直線l(與x軸不重合)與曲線C交于A、B兩點(diǎn),與x軸交于點(diǎn)M.
(i)是否存在定點(diǎn)M,使得 + 為定值,若存在,求出點(diǎn)M坐標(biāo)及定值;若不存在,請(qǐng)說(shuō)明理由;
(ii)在滿足(i)的條件下,連接并延長(zhǎng)AO交曲線C于點(diǎn)Q,試求△ABQ面積的最大值.

【答案】解:(Ⅰ)∵圓的方程為(x+2 2+y2=48的圓心F1為(﹣2 ,0),半徑為4

依題意點(diǎn)P滿足 ,且4 >丨F1F2丨,

故點(diǎn)P的軌跡為以F1、F2為焦點(diǎn),長(zhǎng)軸為4 的橢圓

∴曲線C的方程:

(Ⅱ)(i)設(shè)M(t,0),設(shè)直線l的方程:x=my+t,A(x1,y1),B(x2,y2),

聯(lián)立 ,整理得:(m2+3)y2+2mty+t2﹣12=0,

y1+y2=﹣ ,y1y2= ,

= , = ,

+ = = ,

當(dāng)2t2+24=72﹣6t2,即t2=6時(shí), + =1,

此時(shí)M的坐標(biāo)為(± ,0),

綜上,存在點(diǎn)M(± ,0),使得 + =1,

(ii)由(i)可知:t2=6,則丨AB丨= 丨y1﹣y2丨=

原點(diǎn)O直線AB的距離d= ,SABQ=4× × =

=μ∈[ ,+∞),則SABQ= = =4 ,

當(dāng)且僅當(dāng)t= ,即m=0取最大值,

∴△ABQ面積的最大值4


【解析】(Ⅰ)由足 ,且4 >丨F1F2丨,則點(diǎn)P的軌跡為以F1、F2為焦點(diǎn),長(zhǎng)軸為4 的橢圓,即可求得橢圓方程;(Ⅱ)(i)設(shè)直線l的方程,代入橢圓方程,由 + = ,利用韋達(dá)定理可知2t2+24=72﹣6t2,即可求得t的值, + =1;(ii)利用弦長(zhǎng)公式,求得丨AB丨,利用點(diǎn)到直線距離公式,換元,即可求得△ABQ面積的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OA是南北方向的一條公路,OB是北偏東45°方向的一條公路,某風(fēng)景區(qū)的一段邊界為曲線C.為方便游客光,擬過(guò)曲線C上的某點(diǎn)分別修建與公路OA,OB垂直的兩條道路PM,PN,且PM,PN的造價(jià)分別為5萬(wàn)元/百米,40萬(wàn)元/百米,建立如圖所示的直角坐標(biāo)系xoy,則曲線符合函數(shù)y=x+ (1≤x≤9)模型,設(shè)PM=x,修建兩條道路PM,PN的總造價(jià)為f(x)萬(wàn)元,題中所涉及的長(zhǎng)度單位均為百米.

(1)求f(x)解析式;
(2)當(dāng)x為多少時(shí),總造價(jià)f(x)最低?并求出最低造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在(1+x+x2n= x x2+… xr+… x2n1 x2n的展開(kāi)式中,把D ,D ,D …,D …,D 叫做三項(xiàng)式系數(shù)
(1)求D 的值
(2)根據(jù)二項(xiàng)式定理,將等式(1+x)2n=(1+x)n(x+1)n的兩邊分別展開(kāi)可得,左右兩邊xn的系數(shù)相等,即C =(C 2+(C 2+(C 2+…+(C 2 , 利用上述思想方法,請(qǐng)計(jì)算D C ﹣D C +D C ﹣…+(﹣1)rD C +.. C C 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購(gòu)進(jìn)16枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得如表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購(gòu)進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(rùn)(單位:元),求X的分布列,數(shù)學(xué)期望及方差;
(ii)若花店計(jì)劃一天購(gòu)進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購(gòu)進(jìn)16枝還是17枝?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四個(gè)關(guān)于圓錐曲線的命題中:
①雙曲線 與橢圓 有相同的焦點(diǎn);
②以拋物線的焦點(diǎn)弦(過(guò)焦點(diǎn)的直線截拋物線所得的線段)為直徑的圓與拋物線的準(zhǔn)線是相切的;
③設(shè)A,B為兩個(gè)定點(diǎn),k為常數(shù),若|PA|﹣|PB|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
④過(guò)定圓C上一點(diǎn)A作圓的動(dòng)弦AB,O為原點(diǎn),若 則動(dòng)點(diǎn)P的軌跡為橢圓.其中正確的個(gè)數(shù)是(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log2(1+x)+alog2(1﹣x)(a∈R)的圖象關(guān)于y軸對(duì)稱.
(1)求函數(shù)f(x)的定義域;
(2)求a的值;
(3)若函數(shù)g(x)=x﹣2f(x)﹣2t有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題:①f(x)=sin(2x﹣ )的對(duì)稱軸為x= ,k∈Z;②若函數(shù)y=2cos(ax﹣ )(a>0)的最小正周期是π,則a=2;③函數(shù)f(x)=sinxcosx﹣1的最小值為﹣ ;④函數(shù)y=sin(x+ )在[﹣ ]上是增函數(shù),其中正確命題的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知 =
(1)求 的值
(2)若cosB= ,b=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著霧霾日益嚴(yán)重,很多地區(qū)都實(shí)行了“限行”政策,現(xiàn)從某地區(qū)居民中,隨機(jī)抽取了300名居民了解他們對(duì)這一政策的態(tài)度,繪成如圖所示的2×2列聯(lián)表:

反對(duì)

支持

合計(jì)

男性

70

60

女性

50

120

合計(jì)


(1)試問(wèn)有沒(méi)有99%的把握認(rèn)為對(duì)“限行”政策的態(tài)度與性別有關(guān)?
(2)用樣本估計(jì)總體,把頻率作為概率,若從該地區(qū)所有的居民(人數(shù)很多)中隨機(jī)抽取3人,用ξ表示所選3人中反對(duì)的人數(shù),試寫出ξ的分布列,并求出ξ的數(shù)學(xué)期望.
K2= ,其中n=a+b+c+d獨(dú)立性檢驗(yàn)臨界表:

P(K2≥k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案