【題目】2019年某地區(qū)初中升學(xué)體育考試規(guī)定:考生必須參加長跑、擲實心球、1分鐘跳繩三項測試.某學(xué)校在九年級上學(xué)期開始,就為掌握全年級學(xué)生1分鐘跳繩情況,抽取了100名學(xué)生進(jìn)行測試,得到下面的頻率分布直方圖.
(Ⅰ)規(guī)定學(xué)生1分鐘跳繩個數(shù)大于等于185為優(yōu)秀.若在抽取的100名學(xué)生中,女生共有50人,男生1分鐘跳繩個數(shù)大于等于185的有28人.根據(jù)已知條件完成下面的列聯(lián)表,并根據(jù)這100名學(xué)生的測試成績,判斷能否有99%的把握認(rèn)為學(xué)生1分鐘跳繩成績是否優(yōu)秀與性別有關(guān).
1分鐘跳繩成績 | 優(yōu)秀 | 不優(yōu)秀 | 合計 |
男生人數(shù) | 28 | ||
女生人數(shù) | 100 | ||
合計 | 100 |
(Ⅱ)根據(jù)往年經(jīng)驗,該校九年級學(xué)生經(jīng)過訓(xùn)練,正式測試時每人1分鐘跳繩個數(shù)都有明顯進(jìn)步.假設(shè)正式測試時每人1分鐘跳繩個數(shù)都比九年級上學(xué)期開始時增加10個,全年級恰有2000名學(xué)生,若所有學(xué)生的1分鐘跳繩個數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和標(biāo)準(zhǔn)差估計和,各組數(shù)據(jù)用中點值代替),估計正式測試時1分鐘跳繩個數(shù)大于183的人數(shù)(結(jié)果四舍五入到整數(shù)
附: ,其中 .
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
若隨機(jī)變量服從正態(tài)分布,則
【答案】(Ⅰ)列聯(lián)表見解析,沒有99%的把握認(rèn)為學(xué)生1分鐘跳繩成績是否優(yōu)秀與性別有關(guān). (Ⅱ);,1683人
【解析】
(Ⅰ)首先根據(jù)頻率分布直方圖計算樣本中1分鐘跳繩個數(shù)大于等于185的人數(shù),然后補(bǔ)全列聯(lián)表,并計算,得到結(jié)論;(2)首先根據(jù)頻率分布圖計算平均數(shù)185,
那么 ,,那么,然后根據(jù)條件計算結(jié)果.
(Ⅰ)由題意得樣本中1分鐘跳繩個數(shù)大于等于185的人數(shù)為
補(bǔ)充完整的 列聯(lián)表如下表所示:
1分鐘跳繩成績 | 優(yōu)秀 | 不優(yōu)秀 | 合計 |
男生人數(shù) | 28 | 22 | 50 |
女生人數(shù) | 20 | 30 | 50 |
合計 | 48 | 52 | 100 |
由公式可得
因為
所以沒有99%的把握認(rèn)為學(xué)生1分鐘跳繩成績是否優(yōu)秀與性別有關(guān).
(Ⅱ)因為,
所以 .
而,故服從正態(tài)分布
故估計正式測試時1分鐘跳繩個數(shù)大于183的人數(shù)約為1683
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考3+3最大的特點就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、化學(xué)、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機(jī)構(gòu)為了了解學(xué)生對全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān),覺得從某學(xué)校高一年級的650名學(xué)生中隨機(jī)抽取男生,女生各25人進(jìn)行模擬選科.經(jīng)統(tǒng)計,選擇全理的人數(shù)比不選全理的人數(shù)多10人.
(1)請完成下面的2×2列聯(lián)表;
選擇全理 | 不選擇全理 | 合計 | |
男生 | 5 | ||
女生 | |||
合計 |
(2)估計有多大把握認(rèn)為選擇全理與性別有關(guān),并說明理由;
(3)現(xiàn)從這50名學(xué)生中已經(jīng)選取了男生3名,女生2名進(jìn)行座談,從中抽取2名代表作問卷調(diào)查,求至少抽到一名女生的概率.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品自生產(chǎn)并投入市場以來,生產(chǎn)企業(yè)為確保產(chǎn)品質(zhì)量,決定邀請第三方檢測機(jī)構(gòu)對產(chǎn)品進(jìn)行質(zhì)量檢測,并依據(jù)質(zhì)量指標(biāo)來衡量產(chǎn)品的質(zhì)量.當(dāng)時,產(chǎn)品為優(yōu)等品;當(dāng)時,產(chǎn)品為一等品;當(dāng)時,產(chǎn)品為二等品.第三方檢測機(jī)構(gòu)在該產(chǎn)品中隨機(jī)抽取500件,繪制了這500件產(chǎn)品的質(zhì)量指標(biāo)的條形圖.用隨機(jī)抽取的500件產(chǎn)品作為樣本,估計該企業(yè)生產(chǎn)該產(chǎn)品的質(zhì)量情況,并用頻率估計概率.
(1)從該企業(yè)生產(chǎn)的所有產(chǎn)品中隨機(jī)抽取1件,求該產(chǎn)品為優(yōu)等品的概率;
(2)現(xiàn)某人決定購買80件該產(chǎn)品.已知每件成本1000元,購買前,邀請第三方檢測機(jī)構(gòu)對要購買的80件產(chǎn)品進(jìn)行抽樣檢測.買家、企業(yè)及第三方檢測機(jī)構(gòu)就檢測方案達(dá)成以下協(xié)議:從80件產(chǎn)品中隨機(jī)抽出4件產(chǎn)品進(jìn)行檢測,若檢測出3件或4件為優(yōu)等品,則按每件1600元購買,否則按每件1500元購買,每件產(chǎn)品的檢測費(fèi)用250元由企業(yè)承擔(dān).記企業(yè)的收益為元,求的分布列與數(shù)學(xué)期望;
(3)商場為推廣此款產(chǎn)品,現(xiàn)面向意向客戶推出“玩游戲,送大獎”活動.客戶可根據(jù)拋硬幣的結(jié)果,操控機(jī)器人在方格上行進(jìn),已知硬幣出現(xiàn)正、反面的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、……、第50格.機(jī)器人開始在第0格,客戶每擲一次硬幣,機(jī)器人向前移動一次,若擲出正面,機(jī)器人向前移動一格(從到),若擲出反面,機(jī)器人向前移動兩格(從到),直到機(jī)器人移到第49格(勝利大本營)或第50格(失敗大本營)時,游戲結(jié)束,若機(jī)器人停在“勝利大本營”,則可獲得優(yōu)惠券.設(shè)機(jī)器人移到第格的概率為,試證明是等比數(shù)列,并解釋此方案能否吸引顧客購買該款產(chǎn)品.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐PABC中,不能證明AP⊥BC的條件是( )
A. AP⊥PB,AP⊥PC
B. AP⊥PB,BC⊥PB
C. 平面BPC⊥平面APC,BC⊥PC
D. AP⊥平面PBC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園內(nèi)有一塊以O為圓心半徑為20米的圓形區(qū)域.為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺,舞臺為扇形OAB區(qū)域,其中兩個端點A,B分別在圓周上;觀眾席為等腰梯形ABQP內(nèi)且在圓O外的區(qū)域,其中,,且AB,PQ在點O的同側(cè).為保證視聽效果,要求觀眾席內(nèi)每一個觀眾到舞臺中心O處的距離都不超過60米(即要求).設(shè),.
(1)當(dāng)時求舞臺表演區(qū)域的面積;
(2)對于任意α,上述設(shè)計方案是否均能符合要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解高三年級不同性別的學(xué)生對取消藝術(shù)課的態(tài)度(支持或反對),進(jìn)行了如下的調(diào)查研究,全年級共有1350人,男女生比例為,現(xiàn)按分層抽樣方法抽取若干名學(xué)生,每人被抽到的概率均為,通過對被抽取學(xué)生的問卷調(diào)查,得到如下列聯(lián)表:
支持 | 反對 | 總計 | |
男生 | 30 | ||
女生 | 25 | ||
總計 |
(1)完成列聯(lián)表,并判斷能否有的把握認(rèn)為態(tài)度與性別有關(guān)?
(2)若某班有6名男生被抽到,其中2人支持,4人反對;有4名女生被抽到,其中2人支持,2人反對,現(xiàn)從這10人中隨機(jī)抽取一男一女進(jìn)一步調(diào)查原因.求其中恰有一人支持一人反對的概率.
參考公式及臨界值表:
0.10 | 0.050 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(且)
(1)判斷函數(shù)的奇偶性,并說明理由;
(2)當(dāng)時,直接寫出函數(shù)的單調(diào)區(qū)間(不需證明)
(3)若,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項均為正數(shù)的數(shù)列{an}中,前n項和.
(1)求數(shù)列{an}的通項公式;
(2)若恒成立,求k的取值范圍;
(3)是否存在正整數(shù)m,k,使得am,am+5,ak成等比數(shù)列?若存在,求出m和k的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數(shù)字不是1”,丙說:“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com