15.已知(x2-3x+1)5=a0+a1x+a2x2+…+a10x10,則a1+a2+a3+…+a10=( 。
A.-1B.1C.-2D.0

分析 在所給的等式中,令x=0,可得a0=1,令x=1,可得a0+a1+a2+a3+…+a10=-1,由此求得 a1+a2+a3+…+a10的值.

解答 解:由于(x2-3x+1)5=a0+a1x+a2x2+…+a10x10,令x=0,可得a0=1,
令x=1,可得a0+a1+a2+a3+…+a10=-1,∴a1+a2+a3+…+a10=-2,
故選:C.

點評 本題主要考查二項式定理的應用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.不等式log3${\;}{|x-\frac{1}{3}|}$<-1的解集是( 。
A.(0,$\frac{2}{3}$)B.($\frac{2}{3}$,+∞)C.(0,$\frac{1}{3}$)∪($\frac{1}{3}$,$\frac{2}{3}$)D.($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.sin215°-cos215°的值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖所示的流程圖,輸入的a=2017,b=2016,則輸出的b=2017.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖所示,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=BC=2CD=2,AD=$\sqrt{3}$,PE=2BE.
(1)求證:平面PAD⊥平面PCD;
(2)若二面角P-AC-E的大小為45°,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在△ABC中,角A、B、C所對的邊分別為a、b、c,A=60°,b=2,sinA=$\sqrt{13}$sinB,則向量$\overrightarrow{AB}$在$\overrightarrow{AC}$方向上的投影為( 。
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)是定義在[-3,3]上的偶函數(shù),且在區(qū)間[-3,0]上是單調增函數(shù),若f(1-2m)<f(m),則實數(shù)m的取值范圍是$[-1,\frac{1}{3})∪(1,2]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.當a=3時,寫出閱讀如圖的程序框圖的過程,算出n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.(1+2x24的展開式中x4的系數(shù)等于24.

查看答案和解析>>

同步練習冊答案